• Title/Summary/Keyword: primordial germ cell

Search Result 62, Processing Time 0.026 seconds

Sacrococcygeal Teratoma : A Tumor at the Center of Embryogenesis

  • Phi, Ji Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.3
    • /
    • pp.406-413
    • /
    • 2021
  • Sacrococcygeal teratoma (SCT) is an extragonadal germ cell tumor (GCT) that develops in the fetal and neonatal periods. SCT is a type I GCT in which only teratoma and yolk sac tumors arise from extragonadal sites. SCT is the most common type I GCT and is believed to originate through epigenetic reprogramming of early primordial germ cells migrating from the yolk sac to the gonadal ridges. Fetal SCT diagnosed in utero presents many obstetrical problems. For high-risk fetuses, fetal interventions (devascularization and debulking) are under development. Most patients with SCT are operated on after birth. Complete surgical resection is the key for tumor control, and the anatomical location of the tumor determines the surgical approaches. Incomplete resection and malignant histology are risk factors for recurrence. Approximately 10-15% of patients have a tumor recurrence, which is frequently of malignant histology. Long-term surveillance with monitoring of serum alpha fetoprotein and magnetic resonance imaging is required. Survivors of SCT may suffer anorectal, urological, and sexual sequelae later in their life, and comprehensive evaluation and care are required.

Production of chickens with green fluorescent protein-knockin in the Z chromosome and detection of green fluorescent protein-positive chicks in the embryonic stage

  • Kyung Soo Kang;Seung Pyo Shin;In Su Ha;Si Eun Kim;Ki Hyun Kim;Hyeong Ju Ryu;Tae Sub Park
    • Animal Bioscience
    • /
    • v.36 no.6
    • /
    • pp.973-979
    • /
    • 2023
  • Objective: The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system, which is the most efficient and reliable tool for precisely targeted modification of the genome of living cells, has generated considerable excitement for industrial applications as well as scientific research. In this study, we developed a gene-editing and detection system for chick embryo sexing during the embryonic stage. Methods: By combining the CRISPR/Cas9 technical platform and germ cell-mediated germline transmission, we not only generated Z chromosome-targeted knockin chickens but also developed a detection system for fluorescence-positive male chicks in the embryonic stage. Results: We targeted a green fluorescent protein (GFP) transgene into a specific locus on the Z chromosome of chicken primordial germ cells (PGCs), resulting in the production of ZGFP-knockin chickens. By mating ZGFP-knockin females (ZGFP/W) with wild males (Z/Z) and using a GFP detection system, we could identify chick sex, as the GFP transgene was expressed on the Z chromosome only in male offspring (ZGFP/Z) even before hatching. Conclusion: Our results demonstrate that the CRISPR/Cas9 technical platform with chicken PGCs facilitates the production of specific genome-edited chickens for basic research as well as practical applications.

Comparison of In Vitro Development of Porcine Embryos Derived from Transfer of Embryonic Germ Cell Nuclei into Oocytes by Electrofusion and Piezo-Driven Microinjection

  • Ahn, Kwang-Sung;Won, Ji-Young;Heo, Soon-Young;Kang, Jee-Hyun;Shim, Ho-Sup
    • Reproductive and Developmental Biology
    • /
    • v.31 no.2
    • /
    • pp.127-131
    • /
    • 2007
  • Embryonic germ (EG) cells are undifferentiated stern cells isolated from cultured primordial germ cells (PGC). These cells share many characteristics with embryonic stem cells including morphology and pluripotency. Undifferentiated porcine EG cell lines demonstrating capacities of differentiation both in vitro and in vivo have been established. Since EG cells can be cultured indefinitely in an undifferentiated state, whereas somatic cells in primary culture are often unstable and have limited lifespan, EG cells may provide inexhaustible source of karyoplasts in nuclear transfer (NT). In this study the efficiencies of NT using porcine EG and fetal fibroblast cells were compared. Two different techniques were used to perform NT. With conventional NT procedure (Roslin method) involving fusion of donor cells with enucleated oocytes, the rates of development to the blastocyst stage in EG and somatic cell NT were 16.8% (59/351) and 14.5% (98/677), respectively. In piezo-driven microinjection (Honolulu method) of donor nuclei into enucleated oocytes, the rates of blastocyst formation in EG and somatic cell NT were 11.9% (15/126) and 9.4% (9/96), respectively. Regardless of NT methods used in this study, EG cell NT gave rise to comparable rate of blastocyst development to somatic cell NT. Overall, EG cells can be used as karyoplast donor in NT procedure, and embryos can be produced by EG cell NT that may be used as an alternative to conventional somatic cell NT.

Gonadal Development and Sex Ratio of Artificial Seedlings of the Oblong Rockfish Sebastes oblongus (황점볼락 Sebastes oblongus 인공종묘의 생식소 발달과 성비)

  • Kwak Eun-Joo;Lee Kyung-Wo;Choi Nak-Hyun;Park Chung-Kug;Han Kyeong-Ho;Lee Won-Kyo;Yang Seok-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.3
    • /
    • pp.297-302
    • /
    • 2006
  • We investigated gonadal development and sex ratio of artificial seedlings of the oblong rockfish Sebastes oblongus, based on samplings for 370 days just after parturition. The primordial germ cells and genital ridge appeared separately under the mesentery in the yolk-sac stage larva (total length: 7.10-7.77 mm) just after parturition. The primordial germ cells and genital ridge integrated to form primordial gonad in 5-day-old larvae (7.12-9.68 mm), and then proliferation of somatic cell and germ cell occurred in the gonad, which was maintained undifferentiated until 45-days after parturition (18.6-20.4 mm). The ovarian differentiation began in the larva of 50-days old (dab) after parturition (dap) (20.0-24.5 mm). The somatic tissues elongated from the both opposite end-sites of undifferentiated gonad were consequently fused and formed a complete ovarian cavity at 60-days old dap (25.5-32.0 mm). In 80-days old dap (37.3-47.2 mm), meiosis of oogonia occurred to be chromatin nucleolus stage oocyte. The perinucleolus stage oocytes appeared at in 130-days old dap (68.0-86.0 mm), and previtellogenic stage oocytes appeared in 370-days old dap (101.0-116.0 mm). Only female was observed in the artificially produced oblong rockfish in the present study. This result revealed the effect of higher temperature on the sex determination of the oblong rockfish..

Characterization of Apoptosis in Porcine Primordial Germ Cells In Vitro (체외 돼지 원시 생식세포의 Apoptosis 특성 규명)

  • Lee, C.K.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.4
    • /
    • pp.385-394
    • /
    • 2000
  • When porcine primordial germ cells (PGCs) isolated from the genital ridge and placed in culture to establish EG cells, a large proportion of PGCs are lost during the early period of culture. To characterize the in vitro death of porcine PGCs, PGCs were cultured in suspension, and apoptosis analyzed using a fluorescent activated cell sorter-based DNA fragmentation assay. The results from flow cytometric analysis showed an increase in apoptosis in cultured cells. However, the cells isolated from the genital ridges are a mixture of PGCs and somatic cells. To detect apoptotic signals specific from porcine PGCs, quantitative TUNEL assay was performed at different time of culture (0 ∼ 24 h). The proportion of apoptotic porcine PGCs determined by double staining with alkaline phosphatase activity and in situ TUNEL assay increased as the time of culture progressed and continued at least 24 h. These results demonstrate that one of the causes of loss of porcine PGCs in vitro is apoptosis.

  • PDF

UV Effect on the Number of Primordial Germ Cells in the Embryo of Rana dybowskii (자외선이 산개구리 (Rana dybowskii) embryo의 시원생식세포 수에 미치는 영향)

  • 정해문;김원숙
    • The Korean Journal of Zoology
    • /
    • v.27 no.1
    • /
    • pp.13-24
    • /
    • 1984
  • The fertilized eggs of Rana dybowskii were irradiated with UV (254 nm wave length) on the vegetal hemisphere to investigate the effects on the primordial germ cells (PGCs) and axis formation. The investigations were carried out in two ways; namely time course and UV dose. Up to 1,600 $ergs/mm^2$ of UV dose, irradiated at 60 min. after fertilization, there was no effect on the PGC number. However, the number of PGC comparing with that of unirradiated control was decreased more than 40%. As the amount of irradiation was increased, the number of PGC was inversely declined. The maximal dose of irradiation which eliminates PGC completely without inducing any axis abnormality was 4,800 $ergs/mm^2$. If the eggs were irradiated earlier with this amount the severer effect could be obtained. Thus the UV effect on the PGC number was most effective when irradiated by 60 min. post fertilization. Thereasfter stage. At UV doses over 9,600 $erge/mm^2$ other effects start to appear; namely abnormalities of nerual tube and axis formation. Therefore, comparative study on the UV sensitivity of PGC and axis formation was carried out. It was revealed that UV effect on the axis was drastically decreased at the time of $0.7\\sim0.8$ between fertilization and 1st cleavage, while the germ plasm was sensitive to UV until 4 cell stage.

  • PDF

Proteome Analysis of Chicken Embryonic Gonads: Identification of Major Proteins from Cultured Gonadal Primordial Germ Cells

  • Lee, Sang-In;Han, Beom-Ku;Park, Sang-Hyun;Kim, Tae-Min;Sin, Sang-Soo;Lee, Young-Mok;Kim, Hee-Bal;Lim, Jeong-Mook;Han, Jae-Yong
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2005.11a
    • /
    • pp.66-67
    • /
    • 2005
  • The domestic chicken (Gallus gallus) is an important model for research in developmental biology because its embryonic development occurs in ovo. To examine the mechanism of embryonic germ cell development, we constructed proteome map of gonadal primordial germ cells (gPGC) from chicken embryonic gonads. Embryonic gonads were collected from 500 embryos at 6 day of incubation, and the gPGC were cultured in vitro until colony formed. After 7-10 days in cultured gPGC colonies were separated from gonadal stroma cells (GSCs). Soluble extracts of cultured gPGCs were then fractionated by two-dimensional gel electrophoresis (pH 4-7). A number of protein spots, including those that displayed significant expression levels, were then identified by use of matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry and LC-MS/MS. Of the 89 gPGC spots examined, 50 yielded mass spectra that matched avian proteins found in on-line databases. Proteome map of thistype will serve as an important reference for germ cell biology and transgenic research.

  • PDF

Effects of the Heavy Metal Pollution on the Primordial Germ Cells of Developing Amphibia (중금속 오염이 양서류 시원생식세포 발생에 미치는 영향)

  • Hah, Jae-Chung
    • The Korean Journal of Zoology
    • /
    • v.21 no.2
    • /
    • pp.43-58
    • /
    • 1978
  • Heavy metal treatment on the fertilized frog eggs before the first cleavage results in a quantitative alteration in the number of PGCs. The formation of PGCs is inhibited by a limited range of heavy metal during the early embryonic development. Total doses of lead above 70ppm and doses of cadmium above 4ppm result in a partial reduction of germ cells at the mitotically dormant stage. After this stage the germ cell number increases almost at the same rate as the untreated control tadpoles. In contrast, on mercury treated eggs, total doses above 0.8ppm cause more damage to germ cell formation. Their proliferation rate thereafter seems to be lower compared with the others. These facts seem to suggest that the heavy metal treatment on frog eggs prior to the first cleavage division is not highly effective in the complete elimination of PGCs in constrast with UV irradiation, even though cytolysis of the tissue occurs in the tadpoles.

  • PDF

YY1 and CP2c in Unidirectional Spermatogenesis and Stemness

  • Cheon, Yong-Pil;Choi, Donchan;Lee, Sung-Ho;Kim, Chul Geun
    • Development and Reproduction
    • /
    • v.24 no.4
    • /
    • pp.249-261
    • /
    • 2020
  • Spermatogonial stem cells (SSCs) have stemness characteristics, including germ cell-specific imprints that allow them to form gametes. Spermatogenesis involves changes in gene expression such as a transition from expression of somatic to germ cell-specific genes, global repression of gene expression, meiotic sex chromosome inactivation, highly condensed packing of the nucleus with protamines, and morphogenesis. These step-by-step processes finally generate spermatozoa that are fertilization competent. Dynamic epigenetic modifications also confer totipotency to germ cells after fertilization. Primordial germ cells (PGCs) in embryos do not enter meiosis, remain in the proliferative stage, and are referred to as gonocytes, before entering quiescence. Gonocytes develop into SSCs at about 6 days after birth in rodents. Although chromatin structural modification by Polycomb is essential for gene silencing in mammals, and epigenetic changes are critical in spermatogenesis, a comprehensive understanding of transcriptional regulation is lacking. Recently, we evaluated the expression profiles of Yin Yang 1 (YY1) and CP2c in the gonads of E14.5 and 12-week-old mice. YY1 localizes at the nucleus and/or cytoplasm at specific stages of spermatogenesis, possibly by interaction with CP2c and YY1-interacting transcription factor. In the present article, we discuss the possible roles of YY1 and CP2c in spermatogenesis and stemness based on our results and a review of the relevant literature.