• 제목/요약/키워드: prime ideals.

검색결과 202건 처리시간 0.016초

SOME RESULTS OF MONOMIAL IDEALS ON REGULAR SEQUENCES

  • Naghipour, Reza;Vosughian, Somayeh
    • 대한수학회보
    • /
    • 제58권3호
    • /
    • pp.711-720
    • /
    • 2021
  • Let R denote a commutative noetherian ring, and let 𝐱 := x1, …, xd be an R-regular sequence. Suppose that 𝖆 denotes a monomial ideal with respect to 𝐱. The first purpose of this article is to show that 𝖆 is irreducible if and only if 𝖆 is a generalized-parametric ideal. Next, it is shown that, for any integer n ≥ 1, (x1, …, xd)n = ⋂P(f), where the intersection (irredundant) is taken over all monomials f = xe11 ⋯ xedd such that deg(f) = n - 1 and P(f) := (xe1+11, ⋯, xed+1d). The second main result of this paper shows that if 𝖖 := (𝐱) is a prime ideal of R which is contained in the Jacobson radical of R and R is 𝖖-adically complete, then 𝖆 is a parameter ideal if and only if 𝖆 is a monomial irreducible ideal and Rad(𝖆) = 𝖖. In addition, if a is generated by monomials m1, …, mr, then Rad(𝖆), the radical of a, is also monomial and Rad(𝖆) = (ω1, …, ωr), where ωi = rad(mi) for all i = 1, …, r.

IDEALS AND SUBMODULES OF MULTIPLICATION MODULES

  • LEE, SANG CHEOL;KIM, SUNAH;CHUNG, SANG-CHO
    • 대한수학회지
    • /
    • 제42권5호
    • /
    • pp.933-948
    • /
    • 2005
  • Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for every submodule N of M there exists an ideal I of R such that N = 1M. Let M be a non-zero multiplication R-module. Then we prove the following: (1) there exists a bijection: N(M)$\bigcap$V(ann$\_{R}$(M))$\rightarrow$Spec$\_{R}$(M) and in particular, there exists a bijection: N(M)$\bigcap$Max(R)$\rightarrow$Max$\_{R}$(M), (2) N(M) $\bigcap$ V(ann$\_{R}$(M)) = Supp(M) $\bigcap$ V(ann$\_{R}$(M)), and (3) for every ideal I of R, The ideal $\theta$(M) = $\sum$$\_{m(Rm :R M) of R has proved useful in studying multiplication modules. We generalize this ideal to prove the following result: Let R be a commutative ring with identity, P $\in$ Spec(R), and M a non-zero R-module satisfying (1) M is a finitely generated multiplication module, (2) PM is a multiplication module, and (3) P$^{n}$M$\neq$P$^{n+1}$ for every positive integer n, then $\bigcap$$^{$\_{n=1}$(P$^{n}$ + ann$\_{R}$(M)) $\in$ V(ann$\_{R}$(M)) = Supp(M) $\subseteq$ N(M).