• Title/Summary/Keyword: primary user detection

Search Result 77, Processing Time 0.019 seconds

Energy Detection Based Sensing for Secure Cognitive Spectrum Sharing in the Presence of Primary User Emulation Attack

  • Salem, Fatty M.;Ibrahim, Maged H.;Ibrahim, I.I.
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.6
    • /
    • pp.357-366
    • /
    • 2013
  • Spectrum sensing, as a fundamental functionality of Cognitive Radio (CR), enables Secondary Users (SUs) to monitor the spectrum and detect spectrum holes that could be used. Recently, the security issues of Cognitive Radio Networks (CRNs) have attracted increasing research attention. As one of the attacks against CRNs, a Primary User Emulation (PUE) attack compromises the spectrum sensing of CR, where an attacker monopolizes the spectrum holes by impersonating the Primary User (PU) to prevent SUs from accessing the idle frequency bands. Energy detection is often used to sense the spectrum in CRNs, but the presence of PUE attack has not been considered. This study examined the effect of PUE attack on the performance of energy detection-based spectrum sensing technique. In the proposed protocol, the stationary helper nodes (HNs) are deployed in multiple stages and distributed over the coverage area of the PUs to deliver spectrum status information to the next stage of HNs and to SUs. On the other hand, the first stage of HNs is also responsible for inferring the existence of the PU based on the energy detection technique. In addition, this system provides the detection threshold under the constraints imposed on the probabilities of a miss detection and false alarm.

  • PDF

Cooperative Spectrum Sensing in Cognitive Radio Systems with Weight Value Applied (인지무선 시스템에서 부사용자의 거리에 따른 가중치가 적용된 협력 스펙트럼 센싱)

  • Yun, Heesuk;Yun, Jaesoon;Bae, Insan;Jang, Sunjeen;Kim, Jaemoung
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.91-97
    • /
    • 2014
  • In this paper, we propose weighted detection probability with distance between primary user and secondary users by using cooperative spectrum sensing based on energy detection. And we analysis and simulate the result. We suggest different distance between primary user and secondary users and the wireless channel between primary user and secondary users is modeled as Gaussian channel. From the simulation results of the cooperative spectrum sensing with weighted method make coverage bigger compared with non-weight, and We show higher sensing efficiency when we put weight detection probability than before method.

Performance of Energy Detection Spectrum Sensing with Delay Diversity for Cognitive Radio System

  • Kim, Eun-Cheol;Koo, Sung-Wan;Kim, Jin-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.4
    • /
    • pp.194-201
    • /
    • 2009
  • In this paper, a new spectrum sensing method based on energy detection is proposed and analyzed in a cognitive radio(CR) system. We employ a delay diversity receiver for sensing the primary user's spectrum with reasonable cost and complexity. Conventional CR with the receiver equipping multiple antennas requires additional hardware and space for installing multiple antennas in accordance with increase in the number of antennas. If the number of antennas increases, detection probability as well as hardware complexity and cost rise. Then, it is difficult to make a primary user detector practically. Therefore, we adopt a delay diversity receiver for solving problems of the conventional spectrum detector utilizing multiple antennas. We derive analytical expressions for the spectrum sensing performance of the proposed system. From the simulation results, it is demonstrated that the primary user detector with the delay diversity receiver has almost half the complexity and shows similar or improved performance as compared with that employing multiple antennas. Therefore, the proposed spectrum sensing structure can be a practical solution for enhancing the detection capacity in CR system operations. The results of this paper can be applied to legacy CR systems with simple modifications.

Adaptive Spectrum Sensing for Throughput Maximization of Cognitive Radio Networks in Fading Channels

  • Ban, Tae-Won;Kim, Jun-Su;Jung, Bang-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.251-255
    • /
    • 2011
  • In this paper, we investigate an adaptive cognitive radio (CR) scheme where a sensing duration and a detection threshold for spectrum sensing are adaptively determined according to the channel condition in a fading channel. We optimize the sensing duration and detection threshold of a secondary user to maximize the performance of the secondary user guaranteeing a primary user's secure communication. In addition, we analyze the effect of channel fading on the optimization of the sensing duration and detection threshold. Our numerical results show that the performance of the adaptive CR scheme can be drastically improved if a secondary user can take the advantage of channel information between primary and secondary users.

A Sliding Window-Based Energy Detection Method under Noise Uncertainty for Cognitive Radio Systems (Cognitive Radio 시스템에서 불확실한 잡음 전력을 고려한 슬라이딩 윈도우 기반 에너지 검출 기법)

  • Kim, Young-Min;Sohn, Sung-Hwan;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11A
    • /
    • pp.1105-1116
    • /
    • 2008
  • Cognitive radio is one of the most effective techniques to improve the spectrum utilization efficiency. To implement the cognitive radio, spectrum sensing is considered as the key functionality because only counting on it, can the secondary users identify the spectrum holes and utilize them efficiently without causing interference to primary users. Generally, there are several spectrum sensing methods; the most common and simplest method is energy detection. However, the conventional energy detection has some disadvantages, which are caused by noise, especially, uncertain noise power leads to degradation of energy detector. In this paper, to solve this problem, we proposed sliding window-based energy detection method which can devide the frequency band of primary signal and noise using sliding window to estimate the power of primary user without the noise effect and achieve the better performance. It can calculate the energy of primary user only and can detect the primary signal. The simulation result shows that our proposed method outperforms conventional one.

Multiple-Phase Energy Detection and Effective Capacity Based Resource Allocation Against Primary User Emulation Attacks in Cognitive Radio Networks

  • Liu, Zongyi;Zhang, Guomei;Meng, Wei;Ma, Xiaohui;Li, Guobing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1313-1336
    • /
    • 2020
  • Cognitive radio (CR) is regarded as an effective approach to avoid the inefficient use of spectrum. However, CRNs have more special security problems compared with the traditional wireless communication systems due to its open and dynamic characteristics. Primary user emulation attack (PUEA) is a common method which can hinder secondary users (SUs) from accessing the spectrum by transmitting signals who has the similar characteristics of the primary users' (PUs) signals, and then the SUs' quality of service (QoS) cannot be guaranteed. To handle this issue, we first design a multiple-phase energy detection scheme based on the cooperation of multiple SUs to detect the PUEA more precisely. Second, a joint SUs scheduling and power allocation scheme is proposed to maximize the weighted effective capacity of multiple SUs with a constraint of the average interference to the PU. The simulation results show that the proposed method can effectively improve the effective capacity of the secondary users compared with the traditional overlay scheme which cannot be aware of the existence of PUEA. Also the good delay QoS guarantee for the secondary users is provided.

A Robust Spectrum Sensing Method Based on Localization in Cognitive Radios (인지 무선 시스템에서 위치 추정 기반의 강인한 스펙트럼 검출 방법)

  • Kang, Hyung-Seo;Koo, In-Soo
    • Journal of Internet Computing and Services
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • The spectrum sensing is one of the fundamental functions to realize the cognitive radios. One of problems in the spectrum sensing is that the performance of spectrum sensing can be degraded due to fading and shadowing. In order to overcome the problem, cooperative spectrum sensing method is proposed, which uses a distributed detection model and can increase sensing performance. However, the performance of cooperative spectrum sensing can be still affected by the interference factors such as obstacle and malicious user. Especially, most of cooperative spectrum sensing methods only considered the stationary primary user. In the ubiquitous environment, however the mobile primary users should be considered. In order to overcome the aforementioned problem, in this paper we propose a robust spectrum detection method based on localization where we estimate the location of the mobile primary user, and then based on the location and transmission range of primary user we detect interference users if there are, and then the local sensing reporting from detected interference users are excluded in the decision fusion process. Through simulation, it is shown that the sensing performance of the proposed scheme is more accurate than that of conventional other schemes

Entropy-based Spectrum Sensing for Cognitive Radio Networks in the Presence of an Unauthorized Signal

  • So, Jaewoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.20-33
    • /
    • 2015
  • Spectrum sensing is a key component of cognitive radio. The prediction of the primary user status in a low signal-to-noise ratio is an important factor in spectrum sensing. However, because of noise uncertainty, secondary users have difficulty distinguishing between the primary signal and an unauthorized signal when an unauthorized user exists in a cognitive radio network. To resolve the sensitivity to the noise uncertainty problem, we propose an entropy-based spectrum sensing scheme to detect the primary signal accurately in the presence of an unauthorized signal. The proposed spectrum sensing uses the conditional entropy between the primary signal and the unauthorized signal. The ability to detect the primary signal is thus robust against noise uncertainty, which leads to superior sensing performance in a low signal-to-noise ratio. Simulation results show that the proposed spectrum sensing scheme outperforms the conventional entropy-based spectrum sensing schemes in terms of the primary user detection probability.

Improved Convolutional Neural Network Based Cooperative Spectrum Sensing For Cognitive Radio

  • Uppala, Appala Raju;Narasimhulu C, Venkata;Prasad K, Satya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2128-2147
    • /
    • 2021
  • Cognitive radio systems are being implemented recently to tackle spectrum underutilization problems and aid efficient data traffic. Spectrum sensing is the crucial step in cognitive applications in which cognitive user detects the presence of primary user (PU) in a particular channel thereby switching to another channel for continuous transmission. In cognitive radio systems, the capacity to precisely identify the primary user's signal is essential to secondary user so as to use idle licensed spectrum. Based on the inherent capability, a new spectrum sensing technique is proposed in this paper to identify all types of primary user signals in a cognitive radio condition. Hence, a spectrum sensing algorithm using improved convolutional neural network and long short-term memory (CNN-LSTM) is presented. The principle used in our approach is simulated annealing that discovers reasonable number of neurons for each layer of a completely associated deep neural network to tackle the streamlining issue. The probability of detection is considered as the determining parameter to find the efficiency of the proposed algorithm. Experiments are carried under different signal to noise ratio to indicate better performance of the proposed algorithm. The PU signal will have an associated modulation format and hence identifying the presence of a modulation format itself establishes the presence of PU signal.

An Efficient Spectrum Sensing Technique for Wireless Energy Harvesting Systems (무선에너지하비스팅 시스템을 위한 효율적인 스펙트럼 센싱 기법)

  • Hwang, Yu Min;Shin, Yoan;Kim, Dong In;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.141-145
    • /
    • 2017
  • Spectrum sensing is a critical functionality of Cognitive Radio(CR) systems and the CR systems can be applied to RF energy harvesting systems to improve an energy harvesting rate. There are number of spectrum sensing techniques. One of techniques is energy detection. Energy detection is the simplest detection method and is the most commonly used. But, energy detection has a hidden terminal problem in real wireless communication, because of secondary user (SU) can be affected by frequency fading and shadowing. Cooperative spectrum sensing can solve this problem using spatial diversity of SUs. But it has a problem of increasing data by processing multiple secondary. So, we propose the system model using adaptive spectrum sensing algorithm and system model is simulated. This algorithm chooses sensing method between single energy sensing and cooperative energy according to the received signal's Signal to Noise Ratio (SNR) from Primary User (PU). The simulation result shows that adaptive spectrum sensing has an efficiency and improvement in CR systems.