• Title/Summary/Keyword: primary pollutants

Search Result 122, Processing Time 0.02 seconds

A Study on the Change of Condensable Particulate Matter by the SO2 Concentration among Combustion Gases (연소 배출가스 중 SO2 농도에 따른 응축성먼지 변화에 관한 연구)

  • Yu, JeongHun;Lim, SeulGi;Song, Jihan;Lee, DoYoung;Yu, MyeongSang;Kim, JongHo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.5
    • /
    • pp.651-658
    • /
    • 2018
  • Particulate matter (PM) emitted from fossil fuel-combustion facilities can be classified as either filterable or condensable PM. The U.S. Environmental Protection Agency (EPA) defined condensable PM as material that is in the phase of vapor at the stack temperature of the sampling location which condenses, reacts upon cooling and dilution in the ambient air to form solid or liquid in a few second after the discharge from the stack. Condensable PM passed through the filter media and it is typically ignored. But condensable PM was defined as a component of primary PM. This study investigates the change of condensable PM according to the variation in the sulfur dioxide of combustion gas. Domestic oil boilers were used as the source of emission ($SO_2$) and the level of $SO_2$ concentration (0, 50, 80, and 120 ppm) was adjusted by diluting general light oil and marine gas oil (MGO) that contains sulfur less than 0.5%. Condensable PM was measured as 2.72, 6.10, 8.38, and $13.34mg/m^3$ when $SO_2$ concentration in combustion gas were 0, 50, 80, and 120 ppm respectively. The condensable PM tended to increase as the concentration of $SO_2$ increased. Some of the gaseous air pollutants emitted from the stack should be considered precursors of condensable PM. The gas phase pollutants which converted into condensable PM should reduced for condensable PM control.

Systematic Analysis for the Effects of Atmospheric Pollutants in Cathode Feed on the Performance of Proton Exchange Membrane Fuel Cells

  • Yoon, Young-Gon;Choi, Insoo;Lee, Chang-Ha;Han, Jonghee;Kim, Hyoung-Juhn;Cho, EunAe;Yoo, Sung Jong;Nam, Suk Woo;Lim, Tae-Hoon;Yoon, Jong Jin;Park, Sehkyu;Jang, Jong Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3475-3481
    • /
    • 2014
  • This paper describes how primary contaminants in ambient air affect the performance of the cathode in fuel cell electric vehicle applications. The effect of four atmospheric pollutants ($SO_2$, $NH_3$, $NO_2$, and CO) on cathode performance was investigated by air impurity injection and recovery test under load. Electrochemical analysis via polarization and electrochemical impedance spectroscopy was performed for various concentrations of contaminants during the impurity test in order to determine the origins of performance decay. The variation in cell voltage derived empirically in this study and data reported in the literature were normalized and juxtaposed to elucidate the relationship between impurity concentration and performance. Mechanisms of cathode degradation by air impurities were discussed in light of the findings.

Electrokinetic Extraction of Pollutants from the Vicinity of Unregulated Landfill Site (동전기적 추출에 의한 비위생매립지 주변 오염지반의 정화)

  • Lee, MyungHo;Chung, Ha-Ik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.2
    • /
    • pp.17-22
    • /
    • 2006
  • This paper presents preliminary field investigations on the electrokinetic (EK) remediation coupled with permeable reactive barrier (PRB) system. unregulated and old-fashioned landfills are one of the primary contributors to various contaminated soil problems. In-situ EK remediation technology has been successfully applied to the environs of unregulated landfill site, located in Kyeong-Ki province, Korea. Atomizing slag was adopted as a PRB reactive material for the remediation of groundwater contaminated with inorganic and/or organic substances. From the preliminary investigations, the coupled technology of EK with PRB system would be effecitve to remeidate contaminated grounds without the extraction of pollutants from subsurface due to the reactions between the reactive materials and contaminants.

  • PDF

Analysis of Hydrodynamic Separators for Combined Sewer Overflows and Stromwater Runoff Control (합류식 하수관거 월류수 및 우수관거 유출수의 수리동력학적 오염부하저감장치의 분석)

  • Lee, Soo Young;Oh, Ji Hyun;Ryu, Seong Ho;Kwon, Bong Ki;Chung, Tai Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.117-124
    • /
    • 2005
  • Appropriate removal of pollutants from combined sewer overflows(CSOs) and stormwater runoff is of primary concern to watershed managers trying to meet water quality standards even under a wet weather condition. Harmful substances associated with particles besides TSS and BOD are subjected to removal prior to discharge into the natural waters. Effectiveness of five major hydrodynamic separation technologies, Vortechs, Downstream Defender including Storm King for CSOs control, CDS, Stormceptor, and IHS, were evaluated in this study. There is not sufficient information for accurate evaluation of the removal efficiency for the pollutants from the stormwater runoff and CSOs. Based upon limited engineering data, however, all technologies were found to be effective in separation of heavy particles and floating solids. Technologies utilizing screens seem to have advantage in the treatment capacity than the other technologies relied fully on hydrodynamic behavior. The IHS system seems to have a strong potential in application for control of CSOs because of unique hydrodynamic behavior as well as a flexibility in opening size of the screens. Size of the particulate matter in the CSOs and stormwater runoff is found to be the most important parameter in selection of the type of the hydrodynamic separators. There exists an upper limit in the solids removal efficiency of a hydrodynamic separator, which is strongly dependent upon the particle size distribution of the CSOs and stormwater runoff.

YOLOv5-based Chimney Detection Using High Resolution Remote Sensing Images (고해상도 원격탐사 영상을 이용한 YOLOv5기반 굴뚝 탐지)

  • Yoon, Young-Woong;Jung, Hyung-Sup;Lee, Won-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1677-1689
    • /
    • 2022
  • Air pollution is social issue that has long-term and short-term harmful effect on the health of animals, plants, and environments. Chimneys are the primary source of air pollutants that pollute the atmosphere, so their location and type must be detected and monitored. Power plants and industrial complexes where chimneys emit air pollutants, are much less accessible and have a large site, making direct monitoring cost-inefficient and time-inefficient. As a result, research on detecting chimneys using remote sensing data has recently been conducted. In this study, YOLOv5-based chimney detection model was generated using BUAA-FFPP60 open dataset create for power plants in Hebei Province, Tianjin, and Beijing, China. To improve the detection model's performance, data split and data augmentation techniques were used, and a training strategy was developed for optimal model generation. The model's performance was confirmed using various indicators such as precision and recall, and the model's performance was finally evaluated by comparing it to existing studies using the same dataset.

The Effects of Panax ginseng on TCDD-induced Testicular Atrophy in Guinea Pigs

  • Kim, Wun-Jae;Hwang, Seok-Yeon;Lee, Hyung-Lae;Song, Geun-Song;Kim, Si-Kwan
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.300-311
    • /
    • 1998
  • 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), one of the most notorious toxic environmental pollutants, induces various toxic effects in many organs including testes and is regarded as an endocrine disruptor. Korean ginseng, on the other hand, has been well known for its preventive effects on lox- ins, diabetes melltus and hyperlipidemia. We investigated, histopathologically, the effect of Korean Red ginseng water extract (KR-WE) on guinea pig testes damaged by TCDD. Ninety guinea pigs were divided into 6 groups: normal control (NC) group received vehicle and saline; TCDD,1191kg b.w., was administered intraperitoneally to the single dose TCDD-treated (77) group; 100 mghg b.w.16 and 200mg1kg b.w./d KR-WE were injected intraperitoneally to the preventive groups (PIOO and P2OO, respectively) for 28 days from 1 week before TCDD injection, and to the therapeutic groups (CIOO and C2OO, respectively) for 14 days since 1 week after TCDD administration. Increment of body weight was retarded to a larger extent by TCDD. Moreover, body weight of the 77 group decreased significantly 7 days after TCDD exposure, while that of preventive groups kept increasing. Decrease in body weight was not observed in KR-WE-treated groups. Weight decrease in testes caused by TCDD was remarkably protected by KR-WE. Testicles in 77 group displayed decreased tubular size and maturation arrest at the primary or secondary spermatocyte stage. On the other hand, maturation arrest in germ cells by TCDD was improved in KR-WE treated groups. Almost complete protection of the testes was observed in PIOO and P2OO groups. In addition, the therapeutic effect was noticed in C 100 and C2OO groups. These results provided strong evidence that Korean Red ginseng might be a useful agent for the prevention and treatment of testicular damage induced by environmental pollutants.

  • PDF

Development of 2-D Advection-Dispersion Model with Dispersion Tensor Considering Velocity Field (유속장을 고려한 분산텐서를 포함한 2차원 이송-분산모형의 개발)

  • Seo, Il Won;Lee, Myung Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.171-178
    • /
    • 2006
  • The finite element model based on the 2-D advection-dispersion equation incorporating the dispersion tensor that is calculated using velocity field data was developed in order to analyze more accurately 2-D mixing of pollutants for meandering streams. The proposed model was tested using the straight channel that inclined at 45o in the Cartesian coordinate system. The simulation results showed that dispersion tensor model using velocity field data gives an accurate solution. The suitability of the proposed model in analyzing actual pollutant mixing in meandering channels was demonstrated by comparing the simulation results with experimental data obtained from the tracer tests in the laboratory flume. Comparison results showed that the proposed model with dispersion tensor can represents more accurately the mixing phenomena of the pollutants in the meandering channels in which the direction of the primary flow is varying periodically along the channel.

Structure-dependent Mechanism of Action of Poly Aromatic Hydrocarbons in Cultured Primary Hepatocytes (간세포에서 PAH의 구조 의존적 작용기전)

  • Kim Sun-Young;Hong Sung-Bum;Yang Jae-Ho
    • Toxicological Research
    • /
    • v.22 no.1
    • /
    • pp.23-30
    • /
    • 2006
  • Among poly aromatic hydrocarbons, dioxin and PCBs are the most controversial environmental pollutants in our modern life. These pollutants are known as human carcinogens, and liver is the most sensitive target in animal cancer models. Specific aims of the study were focused on the mechanism of carcinogenesis in hepatocytes and the structure-activity relation among these diverse environmental chemicals. Because key mechanisms of dioxin-induced carcinogenesis in human epithelial cell model are the alteration of signal transduction pathway and PKC isoforms, the alteration of the signal transduction pathways and other factors associated with carcinogenesis were studied. Rat hepatocytes cultured under the sandwich protocols were exposed with the various concentration of dioxins and PCBs, and signal transduction pathway, protein kinase C isoforms, oxidant stress, and apoptotic nuclei were evaluated. Since it is important to understand the structure-activity relation among these chemicals to properly assess the carcinogenic potentials, the study analyzed the parameters associated with carcinogenic processes, based on their structural characteristics. In addition, signal transduction pathways and PKC isoforms involved in inhibition of UV-induced apoptosis were also analyzed to elaborate the tumor promotion mechanism of these chemicals. Induction of apoptosis by UV irradiation was optimal at $60\;J/m^2$ in primary hepatocyte in culture. Compared to non coplanar PCBs such as PCB 114 and PCB 153, coplanar PCBs such as PCB 77 and PCB126 showed a stronger inhibition of apoptosis induced by UV irradiation. Production of reactive oxygen species (ROS) was more stimulated by non-coplanar PCBs than coplanar PCBs with the most potent induction of ROS by chlorinated non-coplanar PCB. As compared to the level of induction by PCB126, non-coplanar PCB153 showed a higher increase of intracellular concentrations. Besides the alteration of intracellular calcium concentration, translocation of PKC from cytosolic fraction to membrane fraction was clearly observed upon the exposure of non-coplanar PCB. Taken together, the present study demonstrated that there is a potent structure-activity relationship among PCB congeners and the mechanism of PAH-induced carcinogenesis is structure-specific. The study suggested that more diverse pathways of PAH-induced carcinogenesis should be taken into account beyond the boundary of Ah receptor dogma to assess the health impact of PAH with more accuracy.

Long-term Trend Analysis of Korean Air Quality and Its Implication to Current Air Quality Policy on Ozone and PM10 (국내 기준성 대기오염물질의 권역별 장기 추이 및 원인 분석: PM10과 오존을 중심으로)

  • Kim, Jeonghwan;Ghim, Young Sung;Han, Jin-Seok;Park, Seung-Myung;Shin, Hye-Jung;Lee, Sang-Bo;Kim, Jeongsoo;Lee, Gangwoong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • Nation-wide systematic and comprehensive measurements of air quality criteria species have been made over 340 sites currently in Korea since 1990. Using these data, temporal and spatial trends of $SO_2$, $PM_{10}$, $NO_2$, $O_3$, CO and $O_x(NO_2+O_3)$ were analyzed to characterize and evaluate implementing efficiency of air quality policy and regulations. Due to strict and effective policy to use cleaner fuels in late 1980s and 1990s, the primary pollutants, such as $SO_2$, CO, and $PM_{10}$ decreased sharply by early 2000s in all parts of Korea. After this period, their concentrations declined with much lower rates in most parts of Korea. In addition, isolated but noticeable numbers of places, especially in major ports, newly developing towns and industrial parks, sustained high levels or even showed further degradation. Despite series of emission control strategies were enforced since early 1990s, $NO_2$ concentrations haven't changed much till 2005, due to significant increase in number of automobiles. Nevertheless, we confirmed that the staggering levels of $NO_2$ and $PM_{10}$ improved evidently after 2005, especially in Seoul Metropolitan Area (SMA), where enhanced regulations for $NO_2$ and $PM_{10}$ emissions was imposed to automobiles and large emission sources. However, their decreasing trends were much lessened in recent years again as current air quality improvement strategies has been challenged to revise further. In contrast to these primary species, annual $O_3$, which is secondary product from $NO_2$ and volatile organic compounds (VOCs), has increased consistently with about 0.6 ppbv per year in every urban part of Korea, while yearly average of daily maximum 8-hour $O_3$ in summer season had a much higher rate of 1.2 ppbv per year. Increase of $O_3$ can be explained mainly by reductions of NO emission. Rising background $O_3$ in the Northeast Asia and increasing oxidizing capacity by changing photochemistry were likely causes of observed $O_3$ increase. The future air quality policy should consider more effective ways to lower alarming level of $O_3$ and $PM_{10}$.

Exploration of Beneficial Herbal Medicines to Attenuate Particulate Matter-induced Cellular Injury in Human Corneal Epithelial Cells (인간 각막상피세포에서 미세먼지로 인한 세포 손상을 완화할 수 있는 유익한 한약재의 탐색)

  • Kim, Da Hye;Kim, Min Yeong;Hwangbo, Hyun;Ji, Seon Yeong;Park, Seh-Kwang;Park, Sung-Ho;Kim, Mi-Young;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.8
    • /
    • pp.647-658
    • /
    • 2022
  • Particulate matter (PM) is known to be involved in the onset and progression of various diseases by promoting oxidative and inflammatory reactions as air pollutants containing various small particles that are harmful. In this study, the protective efficacy of herbal medicines was evaluated in human corneal epithelial cells (hCECs) to select natural products that can protect the eye, the primary organ directly exposed to external pollutants from PM. As a result, five candid ate herbal medicines [Cheonmundong, Asparagus Rhizome; Seokchangpo, Aciru Gramineri Rhizoma; Hwangryeon, Coptidis Rhizoma; Gamgug, Chrysanthemi Indici Flos; and Geumjanhwa (Marigold flower petals)] which showed inhibitory efficacy on PM2.5-induced cytotoxicity, were selected from among 12 candidate herbal medicines. To evaluate the antioxidant activity of these candidate substances, the reactive oxygen species (ROS) scavenging ability was investigated, and it was found that the extracts of Seokchangpo, Cheonmundong and Hwangryeon showed a significant inhibitory effect on PM2.5-induced ROS production, which was correlated with the preservation of mitochondrial activity. In addition, it was confirmed that they could block DNA damage caused by PM2.5 through analysis of 8-hydroxy-2'-deoxyguanosine generation and phosphorylated-H2A histone family member X (γ- H2AX) expression. Furthermore, the increase in inflammasome activity and inflammatory response in PM2.5-treated hCECs was also canceled in the presence of these extracts. Although additional studies are needed, the results of this study will be used as primary data to find novel natural compounds that protect hCECs from PM.