• Title/Summary/Keyword: primary phase

Search Result 1,058, Processing Time 0.028 seconds

Imaging Features of Hepatic Adenoma in a Dog with Atypical Computed Tomographic Findings

  • Jin, Hansol;Cheon, Byunggyu;Lee, Gahyun;Park, Seungjo;Lee, Ju-Hwan;Choi, Jihye
    • Journal of Veterinary Clinics
    • /
    • v.35 no.2
    • /
    • pp.53-56
    • /
    • 2018
  • Computed tomography (CT) findings of hepatic adenoma in veterinary medicine are variable and unlike in human medicine, not defined clearly. A 12-year-old neutered male Shih Tzu presented after a seizure, with weight loss, salivation, and cachexia. An abdominal mass was identified on radiography, and ultrasonographic images showed a mixed echo pattern with marked vascularity. CT showed that the mass originated from caudate lobe, was heterogeneously hypoattenuated compared with the hepatic parenchyma, and had irregular margins. Contrast enhanced CT showed that the mass enhanced like the surrounding liver parenchyma. However, it contained unenhanced areas and enhanced vessels were observed in the arterial phase at the periphery of the mass. The margins of mass were more enhanced in the venous phase than the arterial phase and the hypoattenuating regions within the mass were not enhanced. Greater enhancing in the venous phase is seen with adenomas; however, the heterogeneous enhancement pattern, especially the marginal vascular enhancement and internal hypoattenuating regions, is seen with malignancy. Although this is a single case of hepatic adenoma, the atypical enhanced pattern of this case can provide useful information to predict the malignancy of primary liver tumor.

Effects of Non-Absorbable Gases on the Absorption Process of Aqueous LiBr Solution Film in a Vertical Tube (II) (수직관내 리튬브로마이드 수용액막의 흡수과정에 대한 비흡수가스의 영향)

  • Kim, Byeong-Ju;Lee, Chan-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.499-509
    • /
    • 1998
  • In the absorption process of water vapor in a liquid film, the composition of the gas phase, in which a non-absorbable gas is combined with the absorbate influences the transport characteristics remarkably. In the present study, the absorption processes of water vapor into aqueous solution of lithium bromide in the presence of non-absorbable gases were investigated analytically. The continuity, momentum, energy and diffusion equations for the solution film and gas phase were formulated in integral forms and solved numerically. It was found that the mass transfer resistance in gas phase increased with the concentration of non-absorbable gas. However the primary resistance to mass transfer was in the liquid phase. As the concentration of non-absorbable gas in the absorbate increased, the liquid-vapor interfacial temperature and concentration of absorbate in solution decreased, which resulted in the reduction of absorption rate. The reduction of mass transfer rate was found to be significant for the addition of a small amount of non-absorbable gas to the pure vapor, especially at the outlet of an absorber where non-absorbable gases accumulated. At higher non-absorbable gas concentration, the decrease of absorption flux was almost linear to the volumetric concentration of non-absorbable gas.

Unsteady Flow Characteristics of Closed Cavity by Phase Diagram (Phase Diagram에 의한 밀폐캐비티의 비정상 유동특성)

  • 조대환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.770-777
    • /
    • 1999
  • In this study a phase diagram has been used to investigate the unsteadiness of two-dimensional lid-driven closed flows within a square cavity for twelve Reynolds numbers; $7.5{\times}10^3,\; 8{\times}10^3,\; 8.5{\times}10^3,\; 9{\times}10^3,\; 9.5{\times}10^3,\; 10^4,\;1.5{\times}10^4,\;2{\times}10^4,\; 3{\times}10^4,\; 7.5{\times}10^4$ and $10^5$. The results indicate that the first critical Reynolds number at which the flow unsteadiness of sinusoidal fluctuation appears from the temporal variation of total kinetic energy curves is assumed of sinusoidal fluctuation appears form the temporal variation of total kinetic energy curves is assumed to be in the neigh-bourhood of $Re=8.5{\times}10^3$ The second critical Reynolds number where the periodic amplitude and frequency collapse to random disturbance being existed around $Re=1.5{\times}10^4$ The exponentially decreasing vortices formed at the lower two corners are found commonly at the time-mean flow pattern of $Re=3{\times}10^4$.

  • PDF

Balance Recovery Mechanisms Against Anterior Perturbation during Standing (직립자세에서의 전방향 동요 시 균형회복 기전)

  • 태기식;김영호
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.435-442
    • /
    • 2003
  • In this paper, biomechanical aspects of dynamic대학교postural responses against forward perturbations were experimentally determined simultaneous measurements of joint angles, accelerations. EMG activations, center of pressure(CoP) movements and ground reaction forces(GRF), Thirteen young healthy volunteers, stood on a flat platform, were translated into the forward direction by an AC servo-motor at two separate velocities(0.1m and 0.2m/s). In order to recover postural balance against the forward perturbation, joint motions were observed in the sequence of the ankle dorsiflexion, the knee flexion and then the hip flexion during the later acceleration phase. Both acceleration patterns at the heel and the sacrum were shown the forward acceleration pattern during the later acceleration phase and early of constant velocity phase as increasing platform velocity, respectively. Tibialis anterior(TA) for the ankle dorsiflexion and biceps femoris(BF) for the knee flexion. the primary muscle to recover the forward perturbation, was activated during the half of acceleration phase. Ankle strategy was used for slow-velocity perturbation, but mixed strategy of both ankle and hip used for the fast-velocity perturbation. In addition, parameters of perturbation such as timing and magnitude influenced the postural response against the perturbation.

Simplified 2-D Analytical Model for Winding Loss Analysis of Flyback Transformers

  • Zhang, Junming;Yuan, Wei;Zeng, Hulong;Qian, Zhaoming
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.960-973
    • /
    • 2012
  • The winding loss analysis of a flyback transformer is difficult and ambiguous because the primary side current and the secondary side current differs both in shape and phase, especially for DCM (Discontinuous Conduction Mode) operation. Meanwhile, the fringing field caused by the air gaps further makes the traditional 1-D loss analysis model not directly applicable. The paper gives a thorough investigation into the phase shift of winding currents, which indicates that the phase shift of the high order harmonics is still close to $180^{\circ}$ out-of-phase. Based on the analysis, a simplified 2-D winding loss analytical model for flyback transformers considering the effects of low order harmonics is proposed. By neglecting the y components of the fringing field, the proposed model has an acceptable accuracy and a simple form that is similar to the conventional 1-D model. The power loss calculated with the proposed analysis model is verified by FEA (Finite Element Analysis) simulations and experimental results.

Research on a New 12-Pulse Step-Up and Step-Down Aviation Auto-Transformer Rectifier

  • Jiang, Fan;Ge, Hong-juan;Dong, Xiao-xu;Zhang, Lu
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.266-276
    • /
    • 2018
  • This paper presents a new step-up and step-down multi-pulse auto-transformer rectifier unit (ATRU) topology. This structure can achieve a wide range of output voltages, which solves the problem of auto-transformer output voltage being difficult to regulate. Adding middle taps to the primary winding and reasonably setting the number of auto-transformer windings, constituted two groups of three-phase output voltages with a $30^{\circ}$ phase difference. Multi-pulse output DC voltage is obtained after a three-phase output voltage across two rectifier bridges and inter-phase reactor. Thus, the output DC voltage is related to the number and configuration of the auto-transformer winding. In this paper, the relationship between the voltage ratio of the auto-transformer and the ratio of winding, input current and auto-transformer kilovoltampere rating are deduced and validated by simulations. On this basis, the output voltage range is optimized. An experiment on two different voltage ratio principle prototypes was carried out to verify the correctness of the analysis design.

Validation of Generalized State Space Averaging Method for Modeling and Simulation of Power Electronic Converters for Renewable Energy Systems

  • Rimmalapudi, Sita R.;Williamson, Sheldon S.;Nasiri, Adel;Emadi, Ali
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.231-240
    • /
    • 2007
  • This paper presents an advanced modeling and simulation technique applied to DC/DC power electronic converters fed through renewable energy power sources. The distributed generation (DG) system at the Illinois Institute of Technology, which employs a phase-l system consisting of a photovoltaic-based power system and a phase-2 system consisting of a fuel cell based primary power source, is studied. The modeling and simulation of the DG system is done using the generalized state space averaging (GSSA) method. Furthermore, the paper compares the results achieved upon simulation of the specific GSSA models with those of popular computer aided design software simulations performed on the same system. Finally, the GSSA and CAD software simulation results are accompanied with test results achieved via experimentation on both, the PV-based phase-l system and the fuel cell based phase-2 power system.

A Phase-Shifted Full-Bridge Converter With a New Rectifier Circuit for Reducing Circuiting Current (순환전류 감소를 위한 새로운 정류회로를 갖는 위상천이 풀브리지 컨버터)

  • Choi, Byoung-Gi;Lee, Woo-seok;Lee, Il-Oun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.237-240
    • /
    • 2021
  • This research proposes a new rectifier circuit to reduce the circulating current of a phase-shifted full bridge converter. The proposed circuit is a structure in which the output inductor of the secondary rectifier circuit is changed to a coupled inductor in the phase-shifted full bridge with the existing center-tapped rectifier. The parts are rearranged after adding a diode. After applying the proposed circuit, the circulating current to the primary current of the transformer and the voltage stress of the rectifier diode on the secondary side of the transformer are reduced. Accordingly, the snubber loss of the rectifier is improved. By reducing the circulating current and snubber loss, the circuit achieves higher efficiency than conventional circuits. In this research, we present the structure of the proposed circuit, its strengths, and the analysis results from experiments. Furthermore, its effectiveness is verified through the experimental results of a prototype converter with an input of 300-400 V and an output of 50 V/1 kW.

3-Phase Single Stage AC-DC Converter for Small Wind Turbine System (소형풍력발전을 위한 3상 단일전력단 교류-직류 컨버터)

  • Yu-Jin Moon;Beom-Su Park;Sang-Kyu Kim;Eun-Soo Kim;Deok-Jin Lim
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.28 no.1
    • /
    • pp.68-75
    • /
    • 2023
  • This paper proposes a three-phase single-stage AC-DC converter for the small wind generation system. Input power factor improvement and insulated output can be implemented with the proposed three-phase single-stage AC-DC converter under the wide power generation voltage (80-260 Vac) and frequency (10-42 Hz) in a small wind power generation (WPG) system. The proposed converter is also capable of zero-voltage switching in the primary-side switches and zero-current switching in the secondary-side diodes by phase-shift control at a fixed switching frequency. In addition, it is possible to control a wide output voltage (Vo: 39 VDC-60 VDC) by varying the link voltage and improving the input power factor (PF) and the total harmonic distortion factor (THDi). Simulation and experimental results verified the validity of the proposed converter.

Exploratory Study on the Process and Checklist Items for Construction Safety Inspection Utilizing Drones

  • Jung, Jieun;Baek, Mina;Yu, Chaeyeon;Lee, Donghoon;Kim, Sungjin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.327-336
    • /
    • 2023
  • The focus of this research was to devise a conceptual methodology for drone usage and to assess the viability of safety checklist items specific to drone application in safety oversight. The appraisal was grounded in a focus group interview involving professionals from construction management and safety fields. The proposed process was segmented into four stages: 1) pre-flight phase for flight plan development, 2) drone flight phase for safety condition inspection utilizing checklist items, 3) post-flight phase for visual asset analysis, and 4) documentation and management phase. Furthermore, the research scrutinized the applicability of 32 distinct safety checklist items for drone operations. The primary aim of this investigation was to probe the possible deployment of drones as part of construction safety inspections at work sites. However, it bears mentioning that subsequent research should strive to gather a more extensive sample size through questionnaire surveys, thereby facilitating quantitative analysis. Administering such surveys would yield more comprehensive data compared to a focus group interview, which was constrained by a limited participant count. In summation, this study lays a foundational groundwork for understanding the potential advantages and challenges associated with integrating drones into construction safety management.