• Title/Summary/Keyword: primary matrix

Search Result 416, Processing Time 0.027 seconds

Second Look Arthroscopic Finding after Fibrin Matrix Autologous Chondrocyte Implantation for the Treatment of Articular Cartilage Defect of the Knee - Preliminary Report - (슬관절 연골 결손에 대한 fibrin matrix 자가 연골 세포 이식술 후 이차 관절경 소견 - 예비보고 -)

  • Choi, Sung-Wook;Oh, In-Suk;Kim, Ryuh-Sup;Park, Sun-Won;Lee, Jong-Min;Lee, Moon;Kim, Myung-Ku
    • Journal of the Korean Arthroscopy Society
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • Purpose: The purpose of this preliminary report is to investigate the short term outcome of performing gel type fibrin matrix autologous chondrocyte implantation to patients who have damaged knee joint cartilage using secondary arthroscopy. Material and Methods: Six patients who have damaged knee joint cartilage were involved. The average size of defect was $5.13\;cm^2$. While performing primary arthroscopy, whole layer of cartilage bone was obtained either from the margin of damaged cartilage or the bilateral margin of a trochlea. The cartilaginous cells were obtained for culture for four to six weeks. While performing secondary minimal invasive arthrotomy, gel type fibrin matrix autologous chondrocyte was implanted on the chondral defect site. Results: 4 among 6 patients to be more than good in Modified Cincinnati Knee Scoring system. Lysholm function score was 59.5 preoperatively, and it improved to 76.25. ICRS grading by performing secondary arthroscopy revealed 4 out of 6 patients to be nearly normal. Conclusion: Gel type fibrin matrix autologous chondrocyte implantation is a treatment for cartilage defect, which takes less time to operate than the conventional implantation. In addition, this method minimizes the size of incision and allows arthroscopic surgery. However, long term follow up and more case study is thought to be necessary.

  • PDF

Concentration-dependent in vitro Anti-osteoarthritis Effects of Mixed Formula - Pomegranate Concentrate Powder: Eucommiae Cortex: Achyranthis Radix 5:4:1 (g/g) on the Primary Cultured Rat Articular Chondrocytes

  • Choi, Beom Rak;Ku, Sae Kwang;Kang, Su Jin;Park, Hye Rim;Sung, Mi Sun;Lee, Young Joon;Park, Ki Moon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.2
    • /
    • pp.131-140
    • /
    • 2019
  • The objective of present study is to evaluate concentration-dependent in vitro anti-osteoarthritic (OA) effects of synergic mixed formula consisted of dried pomegranate juice concentrate powder, Eucommiae Cortex aqueous extract and Achyranthis Radix aqueous extract 5:4:1 (g/g) mixture on the primary cultured rat articular chondrocytes. First, any cytotoxic effect of mixture was observed using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium Bromide) assay. Next, cyto-protective effect of test substances was evaluated by using the recombinant human interleukin $(rhIL)-1{\alpha}$ induced chondrocytes. In addition, anti-inflammatory effects were also observed on the lipopolysaccaride (LPS) treated chondrocytes through prostaglandin $E_2(PGE_2)$ productions and 5-lipoxygenase (LPO) activities, and inhibitory effects on matrix metalloproteinase (MMP)-2 and MMP-9 activities were observed on $rhIL-1{\alpha}$ treated chondrocytes with their extracellular matrix (ECM) related mRNA expressions. No obvious cytotoxic effects of mixture were demonstrated. Inflammatory damages of chondrocytes and related ECM degradations induced by treatment of LPS or $rhIL-1{\alpha}$ were significantly and concentration-dependently inhibited by pretreatment of mixture from a concentration level of 0.001 mg/ml to 1 mg/ml. In addition, mixture showed $IC_{50}$ for $rhIL-1{\alpha}-induced$ MMP-2 and MMP-9 activities as 44.01 and $162.47{\mu}g/ml$, and also showed $EC_{50}$ for $rhIL-1{\alpha}-induced$ inhibition of collagen type II, SOX9 and aggrecan mRNA expression as 8.61, 10.79 and $4.47{\mu}g/ml$, respectively. It is observed that mixture showed concentration-dependent anti-inflammatory and cytoprotective ECM preserved effects on the primary cultured rat articular chondrocytes without cytotoxicity.

Cytochalasin D-induced Matrix Metalloproteinase-2 Regulates Articular Chondrocytes Dedifferentiation

  • Choi, In-Kyu;Yu, Seon-Mi;Kim, Song-Ja
    • Biomedical Science Letters
    • /
    • v.14 no.3
    • /
    • pp.179-186
    • /
    • 2008
  • Matrix metalloproteinases (MMPs), also designated matrixins, hydrolyze components of the extracellular matrix. These proteinases playa central role in many biological processes, such as embryogenesis, normal tissue remodeling, wound healing, and angiogenesis, and in diseases such as atheroma, arthritis, cancer, and tissue ulceration. In previous data, disruption of the actin cytoskeleton by cytochalasin D (CD) inhibited NO-induced apoptosis, dedifferentiation, cyclooxygenase (COX)-2 expression, and prostaglandin $E_2$ production in chondrocytes cultured on plastic or during cartilage explants culture. In this study, we investigated the effects of the actin cytoskeleton architecture on MMP-2 expression and dedifferentiation by CD in rabbit articular chondrocytes. Rabbit articular chondrocytes were prepared from cartilage slices of 2-weeks-old New Zealand white rabbits by enzymatic digestion. CD was used as a disruptor of actin cytoskeleton. In this experiments measuring CD dose response, primary chondrocytes were treated with various concentrations of CD for 24h. The actin disruption was determined by immunostaining. MMP-2 expression levels were determined by immunoblot analysis and Reverse transcriptase-Polymerase chain reaction (RT-PCR) and MMP-2 activity was determined by gelatin zymography. We found that cell morphological change and up-regulation of MMP-2 expression by CD as determined via immunostaining, gelatin zymography and immunoblotting. Moreover, CD induced MMP-2 transcription was detected by RT-PCR. Also, CD-induced type II collagen expression was inhibited by MMP-2 inhibitor I treatment. Our results indicate that CD up-regulated MMP-2 activation causes dedifferentiation of articular chondrocyte.

  • PDF

As-Cast and Solidification Structures of Fe-3%C-x%Cr-y%V-w%Mo-z%W Multi- Component White Cast Irons (Fe-3%C-x%Cr-y%V-w%Mo-z%W 다합금계백주철의 주방상태 및 급냉조직)

  • Yu, sung-Kon;Shin, Sang-Woo
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.414-422
    • /
    • 2002
  • Three different multi-component white cast irons alloyed with Cr, V, Mo and W were prepared in order to study their as-cast and solidification structures. Three combinations of the alloying elements were selected so as to obtain the different types of carbides and matrix structures : 3%C-10%Cr-5%Mo-5%W(alloy No.1), 3%C-10%V-5% Mo-5%W(alloy No. 2) and 3%C-17%Cr-3% V(alloy No.3). The as-cast microstructures were investigated with optical and scanning electron microscopes. There existed two different types of carbides, $M_7C_3$ carbide with rod-like morphology and $M_6C$ carbide with fishbone-like one, and matrix in the alloy No. 1. The alloy No. 2 consisted of MC carbide with chunky and flaky type and needle-like $M_2C$ carbide, and matrix. The chunky type referred to primary MC carbide and the flaky one to eutectic MC carbide. The morphology of the alloy No. 3 represented a typical hypo-eutectic high chromium white cast iron composed of rod-like $M_7C_3$ carbide which is very sensitive to heat flow direction and matrix. To clarify the solidification sequence, each iron(50g) was remelted at 1723K in an alumina crucible using a silicon carbide resistance furnace under argon atmosphere. The molten iron was cooled at the rate of 10K/min and quenched into water at several temperatures during thermal analysis. The solidification structures of the specimen were found to consist of austenite dendrite(${\gamma}$), $ ({\gamma}+ M_7C_3)$ eutectic and $({\gamma}+ M_6C)$ eutectic in the alloy No. 1, proeutectic MC, austenite dendrite(${\gamma}$), (${\gamma}$+MC) eutectic and $({\gamma}+ M_2C)$ eutectic in the alloy No. 2, and proeutectic $M_7C_3$ and $ ({\gamma}+ M_7C_3)$ eutectic in the alloy No 3. respectively.

Microstructure Evolution of Ti-6Al-4Fe-0.25Si through Aging Heat Treatment (시효처리에 따른 Ti-6Al-4Fe-0.25Si 합금의 미세조직 변화)

  • Song, Yong Hwan;Kang, Joo-Hee;Park, Chan Hee;Kim, Seong-Woong;Hyun, Yong-Taek;Kang, Nam Hyun;Yeom, Jong-Taek
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.7
    • /
    • pp.477-485
    • /
    • 2012
  • The effect of aging heat treatment on microstructure evolution of the Ti-6Al-4Fe-0.25Si alloy with an initial microstructure of an elongated alpha was investigated. Aging treatments of the samples were carried out at $550^{\circ}C$ for up to 100 hours. The microstructure of the 5 hours heat-treated sample consisted of alpha grains, beta matrix and some TiFe intermetallic compounds that were precipitated from the beta matrix. Increasing the aging time to 10 hours, most of the beta matrix was decomposed to very fine alpha grains (${\sim}0.5{\mu}m$) and TiFe, and thus the volume fraction of the beta matrix was significantly decreased. EBSD analysis revealed that newly formed tertiary-alpha-grains in the vicinity of TiFe had high angle boundaries with respect to the primary and secondary alpha grains. As a result of these phase transformations during aging, the fraction of the alpha/alpha grain boundary was increased while that of the alpha/beta phase boundary was decreased.

Analysis of Factors and Preventive Effects of Crack in Educational Facilities Using Quadrant Analysis Techniques (사분면 분석기법을 활용한 교육시설 균열하자 발생 원인 및 예방효과 분석)

  • Park, Hyun Jung;Kim, Moon Sik;Kim, Hyoung Woo;Kim, Dae Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.773-784
    • /
    • 2023
  • Since 2007, the government has been actively working to enhance the quality of public buildings, as evidenced by initiatives like the "National Basic Architecture Plan" and, since 2014, the "Building Service Industry Promotion Act." Despite these efforts, educational facilities continue to experience more frequent defects compared to large-scale apartment constructions. This study aims to analyze the primary causes of crack formation in educational facilities, employing the 2×2 MATRIX and IPA techniques to develop efficient crack prediction models. The research includes a review of relevant literature and an analysis of data from the Office of Education spanning 2019 to 2021 to pinpoint significant defects. Subsequently, 15 factors related to crack defects were identified through surveys and expert consultations. The 2×2 Matrix analysis of these factors highlighted the challenges in work processes and the effectiveness of preventative measures for crack formation, focusing on key areas for improvement. The findings from this study are anticipated to significantly contribute to the prevention and management of structural cracks in educational facilities, ensuring their long-term integrity.

Influence of Vertical Centrifugal Casting (V.C.C) Conditions and Alloying Elements on Microstructures of High Speed Steel (고속도강의 미세조직에 미치는 합금원소 및 수직원심주조 조건의 영향)

  • Kim, Sug-Won;Lee, Ui-Jong;Woo, Kee-Do;Kim, Dong-Keon
    • Journal of Korea Foundry Society
    • /
    • v.20 no.5
    • /
    • pp.323-329
    • /
    • 2000
  • The HSS consists of hard carbide and matrix of martensite, and so its characteristics of wear resistance, fracture resistance, and surface roughness are good. This study was undertaken to investigate the influence of Nb and V and manufacturing conditions on microstructural behaviors and characteristics in the HSS cylindrical specimens(90 $mm^{O.D.}$ ${\times}$ 60 $mm^{I.D.}$ ${\times}$ 50 $mm^H$) manufactured using VCC(Vertical Centrifugal Casting). In the specimen of Fe-2C-6Cr-1.5W-3Mo-4V alloy, the amount of MC carbide was increased and $M_7C_3$ carbide was decreased with the increase of V and Nb contents. The primary VC carbide was formed and followed by the rod-type eutectic MC carbide was formed in the cell boundary in 9%V added specimen. MC carbide was increased, and $M_7C_3$ carbide was decreased with the addition of Nb content. In the specimen containing more than 3%Nb, primary NbC carbide was formed within the cell of matrix. With increase in rpm, cell and carbides became fine, and amount of carbide $M_7C_3$ was decreased due to increase in cooling rate.

  • PDF

Apigenin Regulates Interleukin-1β-Induced Production of Matrix Metalloproteinase Both in the Knee Joint of Rat and in Primary Cultured Articular Chondrocytes

  • Park, Jin Sung;Kim, Dong Kyu;Shin, Hyun-Dae;Lee, Hyun Jae;Jo, Ho Seung;Jeong, Jin Hoon;Choi, Young Lac;Lee, Choong Jae;Hwang, Sun-Chul
    • Biomolecules & Therapeutics
    • /
    • v.24 no.2
    • /
    • pp.163-170
    • /
    • 2016
  • We examined whether apigenin affects the gene expression, secretion and activity of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as in vivo production of MMP-3 in the knee joint of rat to evaluate the potential chondroprotective effects of apigenin. Rabbit articular chondrocytes were cultured in a monolayer, and reverse transcription - polymerase chain reaction (RT-PCR) was used to measure interleukin-$1{\beta}$ (IL-$1{\beta}$)-induced expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), and ADAMTS-5. In rabbit articular chondrocytes, the effects of apigenin on IL-$1{\beta}$-induced secretion and proteolytic activity of MMP-3 were investigated using western blot analysis and casein zymography, respectively. The effect of apigenin on MMP-3 protein production was also examined in vivo. In rabbit articular chondrocytes, apigenin inhibited the gene expression of MMP-3, MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5. Furthermore, apigenin inhibited the secretion and proteolytic activity of MMP-3 in vitro, and inhibited production of MMP-3 protein in vivo. These results suggest that apigenin can regulate the gene expression, secretion, and activity of MMP-3, by directly acting on articular chondrocytes.

Osteogenic Potency of Nacre on Human Mesenchymal Stem Cells

  • Green, David W.;Kwon, Hyuk-Jae;Jung, Han-Sung
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.267-272
    • /
    • 2015
  • Nacre seashell is a natural osteoinductive biomaterial with strong effects on osteoprogenitors, osteoblasts, and osteoclasts during bone tissue formation and morphogenesis. Although nacre has shown, in one study, to induce bridging of new bone across large non-union bone defects in 8 individual human patients, there have been no succeeding human surgical studies to confirm this outstanding potency. But the molecular mechanisms associated with nacre osteoinduction and the influence on bone marrow-derived mesenchymal stem cells (BMSC's), skeletal stem cells or bone marrow stromal cells remain elusive. In this study we highlight the phenotypic and biochemical effects of Pinctada maxima nacre chips and the global nacre soluble protein matrix (SPM) on primary human bone marrow-derived stromal cells (hBMSCs) in vitro. In static co-culture with nacre chips, the hBMSCs secreted Alkaline phosphatase (ALP) at levels that exceeded bone morphogenetic protein (rhBMP-2) treatment. Concentrated preparation of SPM applied to Stro-1 selected hBMSC's led to rapid ALP secretions, at concentrations exceeding the untreated controls even in osteogenic conditions. Within 21 days the same population of Stro-1 selected hBMSCs proliferated and secreted collagens I-IV, indicating the premature onset of an osteoblast phenotype. The same SPM was found to promote unselected hBMSC differentiation with osteocalcin detected at 7 days, and proliferation increased at 7 days in a dose-dependent manner. In conclusion, nacre particles and nacre SPM induced the early stages of human bone cell differentiation, indicating that they may be promising soluble factors with osteoinductive capacity in primary human bone cell progenitors such as, hBMSC's.

Effects of Secondary Forming Process on Mechanical Properties of $SiC_p$/Al Composites Fabricated by Squeeze Casting (용탕단조법에 의하여 제조한 $SiC_p$/Al 복합재료의 2차 성형공정이 기계적 성질에 미치는 영향)

  • Seo, Y.H;Kang, C.G
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3474-3490
    • /
    • 1996
  • A metal matrix composites(MMCs) for A16061 reinforced with silicon carbide particles is fabricated by melt-stirring method. The primary products of MMCs billets are prepared by volume fractions 5 vol% to 20 vol% and particle size $13\mu m$ to $22\mu m$.This paper will be made to examine the microstructure and mechanical properties of fabricated $SiC_p$/Al 6061 composite by melt-stirring and squeeze casting method. The MMC billets is extruded at $500^{\circ}C$ under the constant extrusion velocity $V_e$=2mm/min using curved shape die. Extrusion force, particle rearrangement, micro structure and mechanical properties of extruded composites will be investigated. The mechanical properties of primary billets manufactured by melt-stirring and squeeze casting method will be compared with extrusion specimen. The effect of volume fraction and size of the reinforcements will be studied. The increase in uniformity of particle dispersion is the major reason for an improvement in reliability due to hot extrusion with optimal shape die. Experimental Young's modulus and 0.2% offset yield strength for the extruded MMCs will be compared with theretical values calculated by the Eshelby method. A method will be proposed for the prediction of Young's modulus and yield strength in $SiC_p$ reinforced MMCs.