Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.7.477

Microstructure Evolution of Ti-6Al-4Fe-0.25Si through Aging Heat Treatment  

Song, Yong Hwan (Department of Material Science and Engineering, Pusan National University)
Kang, Joo-Hee (Titanium Department, Korea Institute of Materials Science)
Park, Chan Hee (Titanium Department, Korea Institute of Materials Science)
Kim, Seong-Woong (Titanium Department, Korea Institute of Materials Science)
Hyun, Yong-Taek (Titanium Department, Korea Institute of Materials Science)
Kang, Nam Hyun (Department of Material Science and Engineering, Pusan National University)
Yeom, Jong-Taek (Titanium Department, Korea Institute of Materials Science)
Publication Information
Korean Journal of Metals and Materials / v.50, no.7, 2012 , pp. 477-485 More about this Journal
Abstract
The effect of aging heat treatment on microstructure evolution of the Ti-6Al-4Fe-0.25Si alloy with an initial microstructure of an elongated alpha was investigated. Aging treatments of the samples were carried out at $550^{\circ}C$ for up to 100 hours. The microstructure of the 5 hours heat-treated sample consisted of alpha grains, beta matrix and some TiFe intermetallic compounds that were precipitated from the beta matrix. Increasing the aging time to 10 hours, most of the beta matrix was decomposed to very fine alpha grains (${\sim}0.5{\mu}m$) and TiFe, and thus the volume fraction of the beta matrix was significantly decreased. EBSD analysis revealed that newly formed tertiary-alpha-grains in the vicinity of TiFe had high angle boundaries with respect to the primary and secondary alpha grains. As a result of these phase transformations during aging, the fraction of the alpha/alpha grain boundary was increased while that of the alpha/beta phase boundary was decreased.
Keywords
titanium; TiFe intermetallic compound; aging; precipitation; electron backscatter diffraction (EBSD);
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. C. Turner and J. S. Hansen, "An Assessment of Existing Titanium Technologies", Albany Research Center, U.S. Department of Energy, Oregon (1999).
2 J. D. K. Rivard, C. A. Blue, D. C. Harper, J. O. Kiggans, P. A. Menchhofer, J. R. Mayotte, L. Jacobsen, and D. Kogut, JOM 57, 58 (2005).
3 J. K. Hong, C. H. Lee, J. H. Kim, J. T. Yeom, and N. K. Park, Surf. Rev. Lett. 17, 1 (2010).   DOI   ScienceOn
4 F. H. Froes, S. J. Mashl, V. S. Moxson, J. C. Hebeisen, and V. A. Duz, JOM 56, 46 (2004).
5 Z. Chen, D. J. Fray, and T. W. Farthing, Nature 407, 361 (2000).   DOI   ScienceOn
6 C. Ouchi, K. Minakawa, K. Takahashi, A. Ogawa, and M. Ishikawa, NKK Tech. Rev. 65, 61 (1992).
7 P. G. Allen, P. J. Bania, A. J. Hutt, and Y. Combress, Titanium '95 Science and Technology 1680 (1995).
8 P. J. Bania, A. J. Hutt, R. E. Adams, and W. M. Parris, Titanium '92 Science and Technology 2787 (1993).
9 R. Boyer, G. Welsch, and E. W. Collins, Materials Properties Handbook, Titanium Alloys, ASM (1996).
10 H. Fujii, S. Soeda, M. Hanaki, and H. Okano, Titanium '95 Science and Technology 2309 (1996).
11 B. H. Choe, J. W. Kim, H. W. Jeong, Y. T. Hyun, S. E. Kim, and Y. T. Lee, J. Kor. Inst. Met. & Mater. 42, 1 (2004).
12 C. H. Park, B. Lee, S. L. Semiatin, and C. S. Lee, Mater. Sci. Eng. A 527, 5203 (2010).   DOI   ScienceOn
13 H. W. Jeong, S. E. Kim, Y. T. Hyun and Y. T. Lee, J. Kor. Inst. Met. & Mater. 39, 34 (2001).
14 P. Zeitz, J. E. Wittig, and G. Frommeyer, Scr. Metall. 20, 757 (1986).   DOI   ScienceOn
15 J. H. Kang and S. H. Kim, Korean J. Met. Mater. 48, 730 (2010).
16 EDAX-TSL, OIM Analysis 6.0 manual (2010).
17 S. Suzuki, EBSD textbook: OIM analyis (B2.02), TSL solutions, Tokyo (2007).
18 R. Petrov, L. Kestens, A. Wasilkowska, and Y. Houbaert, Mater. Sci. Eng. A 447, 285 (2007).   DOI   ScienceOn
19 S. H. Kim, J. H. Kang, and S. Z. Han, Korean J. Met. Mater. 48, 847 (2010).
20 J. H. Kim, S. L. Semiatin, and C. S. Lee, Mater. Sci. Eng. A 394, 366 (2005).   DOI   ScienceOn
21 J. S. Kim, J. H. Kim, Y. T. Lee, C. G. Park, and C. S. Lee, Mater. Sci. Eng. A 263, 272 (1999).   DOI   ScienceOn