• Title/Summary/Keyword: primary components analysis

Search Result 279, Processing Time 0.028 seconds

GC-MS Analysis of the Extracts from Korean Cabbage (Brassica campestris L. ssp. pekinensis ) and Its Seed

  • Hong, Eunyoung;Kim, Gun-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.3
    • /
    • pp.218-221
    • /
    • 2013
  • Korean cabbage, a member of the Brassicaceae family which also includes cauliflower, mustard, radish, and turnip plants, is a crucial leafy vegetable crop. Korean cabbage is harvested after completion of the leaf heading process and is often prepared for use in "baechu kimchi", a traditional Korean food. Many of the components in Korean cabbage are essential for proper human nutrition; these components can be divided into two groups: primary metabolites, which include carbohydrates, amino acids, fatty acids, and organic acids, and secondary metabolites such as flavonoids, carotenoids, sterols, phenolic acids, alkaloids, and glucosinolates (GSLs). Using gas chromatography-mass spectrometry, this study examined the variety of volatile compounds (including isothiocyanates) contained in Korean cabbage and its seed, which resulted in the identification of 16 and 12 volatile compounds, respectively. The primary volatile compound found in the cabbage was ethyl linoleolate (~23%), while 4,5-epithiovaleronitrile (~46%) was the primary volatile component in the seed.

Research of Reliability Assessment through the Analysis of Field Data and Taguchi Method about Vehicle Components Problem (차량부품 문제에 대한 실험계획법과 Field Data 분석을 통한 신뢰성 평가연구)

  • Kang, Chang-Hak;You, Jae-Bog;Lee, Chi-Woo;Kim, Jang-Su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.4
    • /
    • pp.211-217
    • /
    • 2010
  • As the vehicle components are various, we confront unexpected problems in the development and application of them. also warranty expenses occur in the result of unconfirmed warranty.in this paper, to solve the problems of disconnection of damper Strut cable, we applied the optimum conditions through taguchi method for improvement of durability. and we made standard of reliability by weibull analysis of the field data. we acquired reliability standard by correlation with lab data and confirmed improved components satisfying the target of reliability. The analysis of reliability by field data is very useful and we need to apply this method to other components, the correlation between field data and Lab Test has influence on satisfying the target of reliability.this method would be utilized for current mass production components and upcoming developed components. the reliability of durability should be continuously used in the basis of primary technique in cope with competitive automotive companies.

  • PDF

Evaluation of Thermal Stratification and Primary Water Environment Effects on Fatigue Life of Austenitic Piping (열성층 및 냉각재 환경이 오스테나이트 배관의 피로수명에 미치는 영향 평가)

  • Choi, Shin-Beom;Woo, Seung-Wan;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin;Lee, Jin-Ho;Chung, Hae-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.660-667
    • /
    • 2008
  • During the last two decades, lots of efforts have been devoted to resolve thermal stratification phenomenon and primary water environment issues. While several effective methods were proposed especially in related to thermally stratified flow analyses and corrosive material resistance experiments, however, lack of details on specific stress and fatigue evaluation make it difficult to quantify structural behaviors. In the present work, effects of the thermal stratification and primary water are numerically examined from a structural integrity point of view. First, a representative austenitic nuclear piping is selected and its stress components at critical locations are calculated in use of four stratified temperature inputs and eight transient conditions. Subsequently, both metal and environmental fatigue usage factors of the piping are determined by manipulating the stress components in accordance with NUREG/CR-5704 as well as ASME B&PV Codes. Key findings from the fatigue evaluation with applicability of pipe and three-dimensional solid finite elements are fully discussed and a recommendation for realistic evaluation is suggested.

SPECTROSCOPIC ANALYSIS OF THE R CANIS MAJORIS BINARY SYSTEM

  • A-THANO, N.;MKRTICHIAN, D.E.;KOMONJINDA, S.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.231-232
    • /
    • 2015
  • R Canis Majoris is a bright, short-period ($1^d$.1359) Algol-type eclipsing binary. For a long time, it was considered to be a low-mass binary star with $M_1=1.1M_{\odot}$ and $M_2=0.17M_{\odot}$ primary and secondary components, respectively (Tomkin, 1985). Glazunova, Yushchenko & Mkrtichian (2009) found new masses for the primary and secondary components of $M_1=1.81M_{\odot}$ and $M_2=0.23M_{\odot}$, respectively and resolved a long-standing problem with the low masses of components for this binary. Budding and Butland (2011) confirmed the results of Glazunova, Yushchenko & Mkrtichian and obtained improved orbits and masses. New spectroscopic observations of R CMa were done during 8 nights on December 2012 with the 2.4-meter telescope of the Thai National Observatory (TNO) and fibre-fed medium resolution echelle spectrograph. We obtained new, accurate orbital radial velocities of the two components of this binary system. Results of these investigations and the new orbital parameters are presented.

Investigation of Burst Pressures in PWR Primary Pressure Boundary Components

  • Namgung, Ihn;Giang, Nguyen Hoang
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.236-245
    • /
    • 2016
  • In a reactor coolant system of a nuclear power plant (NPP), an overpressure protection system keeps pressure in the loop within 110% of design pressure. However if the system does not work properly, pressure in the loop could elevate hugely in a short time. It would be seriously disastrous if a weak point in the pressure boundary component bursts and releases radioactive material within the containment; and it may lead to a leak outside the containment. In this study, a gross deformation that leads to a burst of pressure boundary components was investigated. Major components in the primary pressure boundary that is structurally important were selected based on structural mechanics, then, they were used to study the burst pressure of components by finite element method (FEM) analysis and by number of closed forms of theoretical relations. The burst pressure was also used as a metric of design optimization. It revealed which component was the weakest and which component had the highest margin to bursting failure. This information is valuable in severe accident progression prediction. The burst pressures of APR-1400, AP1000 and VVER-1000 reactor coolant systems were evaluated and compared to give relative margins of safety.

Analysis and Comparison of Volatile Flavor Components in Rice Wine Fermented with Phellinus linteus Mycelium and Regular Commercial Rice Wine

  • Choi, Sung-Hee;Jang, Eun-Young;Choi, Byung-Tae;Im, Sung-Im;Jeong, Young-Kee
    • Food Quality and Culture
    • /
    • v.2 no.1
    • /
    • pp.32-36
    • /
    • 2008
  • This study identified and compared the volatile flavor components of two commercial rice wines: one fermented using the mycelium of Phellinus linteus and a regular commercial rice wine. The volatile flavor components were isolated from the infusions by Porapak Q (50-80 mesh) column adsorption. The concentrated aroma extracts were then analyzed and identified by GC and GC-MS. Thirty-four kinds of flavor components were identified in the mycelium-fermented rice wine, including 11 alcohols, 8 esters, 3 ketones, 6 acids, 3 hydrocarbones, and 4 others. In the regular commercial rice wine, 36 kindss of flavor compounds were identified, including 9 alcohols, 6 esters, 4 ketones, 6 acids, 9 hydrocarbones, and 2 others. Therefore, the data indicate that the primary flavor components in the rice wines were alcohols and esters.

  • PDF

Management of Recycling-Oriented Manufacturing Components Based on an MCDM Model (MCDM 모델을 이용한 재활용 제조부품 관리)

  • Shin, Wan-S.;Oh, Hyun-Joo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.4
    • /
    • pp.589-605
    • /
    • 1996
  • Recycling of used products and components has been considered as one of promising strategies for resolving environmental problems. In this respect, most manufacturing companies begin to consider possible recycling (e.q., reuse or re-production) of the components contained in their products. The primary objective of this research is to develop a multiple criteria decision making model for systematic management of recycle-oriented manufacturing components. The production planning problem of recycle-oriented manufacturing components is first formulated as a multiobjective mixed 0-1 integer programming model with three conflicting objectives. An interactive multiple criteria decision making method is then developed for solving the mathematical model. Also, an Input/Output analysis software is developed to help practitioners apply the model to real problems without much knowledge on computers and mathematical programming. A numerical example is used in examining the validity of the proposed model and to investigate the impact of the input variables on recycling production strategy.

  • PDF

Structural Safety of Universal Joint using FEM Simulation (FEM 시뮬레이션을 이용한 유니버설 조인트의 구조안전성)

  • Jung, Jong Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.213-219
    • /
    • 2018
  • Mechanical components are to be produced with accurate dimensions in order to function properly in assemblies of a machine. Once designs of mechanical components are created, designers examine the designs by adopting many known experimental methods. A primary test method includes stress and strain evaluation of structural parts. In addition, fatigue test and vibration analysis are an important test method for mechanical components. Real experiments at a laboratory are established when products are manufactured. Since design changes should be done before producing the designs in factories, rapid modifications for new designs are required in production industries. FEM simulation is a proper choice for a design evaluation with speed at a detail stage in design process. This research focuses modeling and mechanical simulation of a mechanical component in order to ensure structural safety. In this paper, a universal joint, being used in driving axels of vehicles, is studied as a target component. A design model is created and tested in some ways by using commercial software of FEM. The designed component is being twisted to transmit heavy power and thus, torsional stress should be under strengths of the component's material. The next is fatigue analysis to convince fatigue cycles to be within the endurance limit of the material. Another test is a vibration analysis for rotational components. This research draws final conclusions from these test analyses and recommends whether the designed model is under safety condition in terms of mechanical structure.

EVALUATION OF PRIMARY WATER STRESS CORROSION CRACKING GROWTH RATES BY USING THE EXTENDED FINITE ELEMENT METHOD

  • LEE, SUNG-JUN;CHANG, YOON-SUK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.895-906
    • /
    • 2015
  • Background: Mitigation of primary water stress corrosion cracking (PWSCC) is a significant issue in the nuclear industry. Advanced nickel-based alloys with lower susceptibility have been adopted, although they do not seem to be entirely immune from PWSCC during normal operation. With regard to structural integrity assessments of the relevant components, an accurate evaluation of crack growth rate (CGR) is important. Methods: For the present study, the extended finite element method was adopted from among diverse meshless methods because of its advantages in arbitrary crack analysis. A user-subroutine based on the strain rate damage model was developed and incorporated into the crack growth evaluation. Results: The proposed method was verified by using the well-known Alloy 600 material with a reference CGR curve. The analyzed CGR curve of the alternative Alloy 690 material was then newly estimated by applying the proven method over a practical range of stress intensity factors. Conclusion: Reliable CGR curves were obtained without complex environmental facilities or a high degree of experimental effort. The proposed method may be used to assess the PWSCC resistance of nuclear components subjected to high residual stresses such as those resulting from dissimilar metal welding parts.

Thermal Design for Satellite Propulsion System by Thermal Analysis (열해석에 의한 인공위성 추진시스템 열설계)

  • Han, Cho-Young;Kim, Jeong-Soo;Rhee, Seung-Wu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.117-124
    • /
    • 2003
  • Thermal design fur satellite propulsion system has been performed. Overall design requirements and the constitution for propulsion system is described. To meet the thermal design requirements, both a primary and a redundant heater circuit, each with two thermostats placed in series, will protect each hydrazine-wetted components, even if one heater circuit fails to operate. Heater power is turned off if any one of these thermostats is opened at its higher setpoint. Thus, even if one thermostat is failed closed, the second thermostat will turn off the heater. All such components shall be insulated with MLI. Propulsion heater sizing based on the constant worst cold case condition is conducted through thermal analysis. All heaters selected fur propulsion components operate to prevent propellant freezing satisfying the thermal requirements for the propulsion subsystem over the worst case average voltage, i.e. 25 volts.