• Title/Summary/Keyword: price prediction

Search Result 413, Processing Time 0.026 seconds

Prediction of Optimal Production Level for Maximizing Total Profit in Miryang Sesame Leaf Cultivation (밀양 깻잎 농업의 총소득 극대화를 위한 적정 생산 규모 전망)

  • Cho, Jae-Hwan;Chung, Wonho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.313-320
    • /
    • 2021
  • This study develops a demand and supply model and price model for Miryang sesame leaf cultivation and predicts the optimal production level to maximize total profit for Miryang sesame leaf farms. We used time series data from 1996 to 2017, which are related to Miryang sesame leaf cultivation. For the analysis, we estimated the demand function and average cost function, calculated the optimal production level and price, and derived the optimal profit. In addition, we predicted the optimal production level, price, total revenue, total cost, and profit until the year 2030 through scenario analysis. The results show that the optimal production level until the year 2030 is between 10 and 12.5 thousand tons, while the production volume was 7 thousand tons in 2017, and total profit for Miryang sesame leaf farms is estimated at 13.3 to 21.3 billion Korean won in 2030. The producer group needs to maintain the optimal production level to maximize total profit for farmers, as suggested in this study.

The Influence of Macroeconomics Variables on Sportainment Industry - Case Study Using the Stock Price Changes of Nike, Adidas - (거시경제요인이 스포테인먼트 산업에 미치는 영향 - NIKE, Adidas 기업 주가를 중심으로 -)

  • Kim, Hun-Il
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.5
    • /
    • pp.99-113
    • /
    • 2021
  • This study to verify the influence of the macroeconomic factors to sportainment industry and also to find the value of use. For this, 'Dow Jones Industrial Average (DJIA)', 'West Texas intermediate (WTI)', and 'Gold Price (GP)' were selected from macroeconomic factors, and the 'Stock Price' of NIKE and Adidas for sportainment industry factor. The transaction data for 20 years (5,285 trade days) were analyzed through a two-step extraction process. Durbin-Watson regression analysis was performed to prove the influence and predict. From these analyses, the first, the Macroeconomics factors were found to have a significant effect on the sportainment industry. The second, each different levels of regression equations were found by the time setting, the environmental characteristics of each time period, and mutual relation between factors. Finally, it was found that the regression equation between specific period can be used for the future prediction in sportainment industry.

Conflict of Interests and Analysts' Forecast (이해상충과 애널리스트 예측)

  • Park, Chang-Gyun;Youn, Taehoon
    • KDI Journal of Economic Policy
    • /
    • v.31 no.1
    • /
    • pp.239-276
    • /
    • 2009
  • The paper investigates the possible relationship between earnings prediction by security analysts and special ownership ties that link security companies those analysts belong to and firms under analysis. "Security analysts" are known best for their role as information producers in stock markets where imperfect information is prevalent and transaction costs are high. In such a market, changes in the fundamental value of a company are not spontaneously reflected in the stock price, and the security analysts actively produce and distribute the relevant information crucial for the price mechanism to operate efficiently. Therefore, securing the fairness and accuracy of information they provide is very important for efficiencyof resource allocation as well as protection of investors who are excluded from the special relationship. Evidence of systematic distortion of information by the special tie naturally calls for regulatory intervention, if found. However, one cannot presuppose the existence of distorted information based on the common ownership between the appraiser and the appraisee. Reputation effect is especially cherished by security firms and among analysts as indispensable intangible asset in the industry, and the incentive to maintain good reputation by providing accurate earnings prediction may overweigh the incentive to offer favorable rating or stock recommendation for the firms that are affiliated by common ownership. This study shares the theme of existing literature concerning the effect of conflict of interests on the accuracy of analyst's predictions. This study, however, focuses on the potential conflict of interest situation that may originate from the Korea-specific ownership structure of large conglomerates. Utilizing an extensive database of analysts' reports provided by WiseFn(R) in Korea, we perform empirical analysis of potential relationship between earnings prediction and common ownership. We first analyzed the prediction bias index which tells how optimistic or friendly the analyst's prediction is compared to the realized earnings. It is shown that there exists no statistically significant relationship between the prediction bias and common ownership. This is a rather surprising result since it is observed that the frequency of positive prediction bias is higher with such ownership tie. Next, we analyzed the prediction accuracy index which shows how accurate the analyst's prediction is compared to the realized earnings regardless of its sign. It is also concluded that there is no significant association between the accuracy ofearnings prediction and special relationship. We interpret the results implying that market discipline based on reputation effect is working in Korean stock market in the sense that security companies do not seem to be influenced by an incentive to offer distorted information on affiliated firms. While many of the existing studies confirm the relationship between the ability of the analystand the accuracy of the analyst's prediction, these factors cannot be controlled in the above analysis due to the lack of relevant data. As an indirect way to examine the possibility that such relationship might have distorted the result, we perform an additional but identical analysis based on a sub-sample consisting only of reports by best analysts. The result also confirms the earlier conclusion that the common ownership structure does not affect the accuracy and bias of earnings prediction by the analyst.

  • PDF

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.

The Effect of the Reduction in the Interest Rate Due to COVID-19 on the Transaction Prices and the Rental Prices of the House

  • KIM, Ju-Hwan;LEE, Sang-Ho
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.8
    • /
    • pp.31-38
    • /
    • 2020
  • Purpose: This study uses 'Autoregressive Integrated Moving Average Model' to predict the impact of a sharp drop in the base rate due to COVID-19 at the present time when government policies for stabilizing house prices are in progress. The purpose of this study is to predict implications for the direction of the government's house policy by predicting changes in house transaction prices and house rental prices after a sharp cut in the base rate. Research design, data, and methodology: The ARIMA intervention model can build a model without additional information with just one time series. Therefore, it is a time-series analysis method frequently used for short-term prediction. After the subprime mortgage, which had shocked since the global financial crisis in April 2007, the bank's interest rate in 2020 is set at a time point close to zero at 0.75%. After that, the model was estimated using the interest rate fluctuations for the Bank of Korea base interest rate, the house transaction price index, and the house rental price index as event variables. Results: In predicting the change in house transaction price due to interest rate intervention, the house transaction price index due to the fall in interest rates was predicted to change after 3 months. As a result, it was 102.47 in April 2020, 102.87 in May 2020, and 103.21 in June 2020. It was expected to rise in the short term. In forecasting the change in house rental price due to interest rate intervention, the house rental price index due to the drop in interest rate was predicted to change after 3 months. As a result, it was 97.76 in April 2020, 97.85 in May 2020, and 97.97 in June 2020. It was expected to rise in the short term. Conclusions: If low interest rates continue to stimulate the contracted economy caused by COVID-19, it seems that there is ample room for house transaction and rental prices to rise amid low growth. Therefore, In order to stabilize the house price due to the low interest rate situation, it is considered that additional measures are needed to suppress speculative demand.

Bigdata Analysis of Fine Dust Theme Stock Price Volatility According to PM10 Concentration Change (PM10 농도변화에 따른 미세먼지 테마주 주가변동 빅데이터 분석)

  • Kim, Mu Jeong;Lim, Gyoo Gun
    • Journal of Service Research and Studies
    • /
    • v.10 no.1
    • /
    • pp.55-67
    • /
    • 2020
  • Fine dust has recently become one of the greatest concerns of Korean people and has been a target of considerable efforts by governments and local governments. In the academic world, many researches have been carried out in relation to fine dust, but the research on the economic field has been relatively few. So we wanted to know how fine dust affects the economy. Big data of PM10 concentration for fine dust and fine dust theme stock price were collected for five years from 2013 to 2017. Regression analysis was performed using the linear regression model, the generalized least squares method. As a result, the change in the fine dust concentration was found to have a effect on the related theme stocks' price. When the fine dust concentration increased compared to the previous day, the fine dust theme stocks' price also showed a tendency to increase. Also, according to the analysis of stock price change from 2013 to 2017 based on fine dust theme stocks, companies with large regression coefficients were changed every year. Among them, the regression coefficients of Monalisa were repeatedly high in 2014, 2015, 2017, Samil Pharmaceutical in 2015, 2016 and 2017, and Welcron in 2016 and 2017, and the companies were judged to be sensitive to the concentration of fine dust. The companies that responded the most in the past 5 years were Wokong, Welcron, Dongsung Pharmaceutical, Samil Pharmaceutical, and Monalisa. If PM2.5 measurement data are accumulated enough, it would be meaningful to compare and analyze PM2.5 concentration with independent variables. In this study, only the fine dust concentration is used as an independent variable. However, it is expected that a more clear and well-explained result can be found by adding appropriate additional variables to increase the explanatory power.

A Study on the Verification of Sales Price Factors in Residential Building Development by Using Correlation Analysis (상관분석을 통한 공동주택 개발사업의 분양가 산정 요인 도출연구)

  • Son, Seunghyun;Lee, Jaehyeon;Son, Kiyoung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.4
    • /
    • pp.45-52
    • /
    • 2024
  • Estimating the sales price of a residential building development project is difficult because of it has many complex variables such as location, environment, and economic conditions. Many previous studies related to influence factors of the sales price is to identify by survey of experts and it is few studies by comparing with actual sales price. Accordingly, the purpose of this study is to identify the factors influenced on the projects by using correlation analysis from collected actual data in this study. For the purpose, first, the factors such as economy, location, housing, financial environmental factors were identified from previous studies. Second, data were collected on actual sale prices and selected factors. Finally, the actual sales price and factors were compared and analyzed by using correlation analysis. As a result, the R2 values of economy, location, housing and financial environmental factors were over 0.5 respectively. Therefore, it was confirmed that these factors were significantly correlated with actual sales price. The results of this study are expected to be utilized as basic data for research and development of a new sale prices prediction model.

A Study on the Cigarette price increases induced changes in Smoking rate and Smoking cessation plan (담배가격 인상에 따른 흡연율 및 금연계획의 변화)

  • Soo-Bok Lee;Jeong-An Seo
    • Journal of the Health Care and Life Science
    • /
    • v.10 no.2
    • /
    • pp.295-303
    • /
    • 2022
  • The purpose of this study is to investigate the changes in smoking rates and smoking cessation plans before and after the cigarette price increases in 2015. Therefore, based on the National Health and Nutrition Survey, this study analyzes the correlation of the change in smoking rate and cessation plans with sociological variables (gender, age, income quintile, occupation, education level, hypertension, diabetes) and health behaviors (drinking, stress perception, obesity) in 2013 before the cigarette price increases and in 2015 and then in 2017. Results indicated that the smoking rate in 2013 was 23.3%, the smoking rate in 2015 was 20.5%, and the smoking rate in 2017 was 21.0%, indicating that the smoking rate decreased compared to before the cigarette price was raised. Among the sociological variables, the cigarette price increases showed a difference in the smoking rate of income, occupation, and education level, and health behavior was found to have no significant effect on smoking rate. In addition, the cigarette price increases showed a temporary effect on the increase in the smoking cessation plan, but the increase in the smoking cessation plan did not necessarily lead to decrease the smoking rate. Therefore, in the future, efforts will be needed at the national level to provide customized smoking cessation programs by gender, age, and social factors so that the smoking cessation plan can lead to decrease the smoking rate. In addition, Research on health behaviors that were not identifited in this study should also be conducted. We hope that this study will help the prediction of the impact of smoking rate in case the price increases policies are considered or implemented.

Prediction of Conditional Variance under GARCH Model Based on Bootstrap Methods (붓스트랩 방법을 이용한 일반화 자기회귀 조건부 이분산모형에서의 조건부 분산 예측)

  • Kim, Hee-Young;Park, Man-Sik
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.287-297
    • /
    • 2009
  • In terms of generalized autoregressive conditional heteroscedastic(GARCH) model, estimation of prediction interval based on likelihood is quite sensitive to distribution of error. Moveover, it is not an easy job to construct prediction interval for conditional variance. Recent studies show that the bootstrap method can be one of the alternatives for solving the problems. In this paper, we introduced the bootstrap approach proposed by Pascual et al. (2006). We employed it to Korean stock price data set.

Development of a Supporting System for Nutrient Solution Management in Hydroponics I. Fertilizer Combination and Electrical Conductivity(EC) Prediction (양액재배를 위한 배양액관리 지원시스템의 개발 I. 배양액의 배합 및 전기전도도(EC)의 예측)

  • 손정익;김문기
    • Journal of Bio-Environment Control
    • /
    • v.1 no.1
    • /
    • pp.52-60
    • /
    • 1992
  • The optimum management of nutrient solution needs the effective combination of fertilizers as well as the accurate control of nutrient solution. This study was attempt to make a supporting system for effective fertilizer combination by using computer and also to develop a EC predicting equation for keeping the EC of solution within the allowable range after application of combined fertilizers. The supporting system consists of three parts : (1) data bases, (2) rules for deciding the kinds and amounts of fertilizers and (3) main control. With input data, the main control automatically constructs the network connecting the related data bases and subsequently executes the operation of searching proper fertilizers through it. For more effective searching, fertilizers are classified into two levels(level 1 and level 2) in consideration of solubility, price, and frequency in use, and searched in that order. The EC prediction equation, a extended form of the Robinson and Stroke's theoretical equation only available for a binary electrolyte, is suggested for predicting the EC of the nutrient solution containing many kinds of inorganic compounds. The comparison of predicted and measured ECs showed good agreements with the high correlation between the predicted EC decrement by ion interaction and the actual one(limiting EC minus measured EC).

  • PDF