• 제목/요약/키워드: pretreatment process

검색결과 724건 처리시간 0.018초

레이저유도붕괴분광법을 활용한 토양의 정량분석 (Quantitative Elemental Analysis in Soils by using Laser Induced Breakdown Spectroscopy(LIBS))

  • 장용선;이계준;이정태;황선웅;진용익;박찬원;문용희
    • 한국토양비료학회지
    • /
    • 제42권5호
    • /
    • pp.399-407
    • /
    • 2009
  • 레이저 유도붕괴 분광법(LIBS)은 물질상태(고체, 액체, 기체)에 상관없이 신체 접촉시 오염 우려 및 미량 시료도 전처리 없이 동시에 많은 종류의 원소 분석으로 분석과정이 단순하고 신속하게 분석이 가능하며, 소형화된 레이저의 개발로 시료의 직접적인 채취가 어려운 조건의 현장분석에도 적합하다. 농산물 안정성 평가나 친환경 농업 및 정밀농업을 위한 조사 등에 활용될 수 있는 비파괴 실시간 정량분석기술로서 LIBS 분석법의 토양분석 가능성을 평가하고자 표준광물, 미국의 표준기술연구소의 표준토양, 미국 테네시주 초지 및 밭토양을 대상으로 토양 구성성분의 정성 정량적 분석에 필요한 측정조건을 조사하고 이를 토대로 LIBS에 의한 농도값과 기존의 화학분석법을 통해 측정한 결과를 비교하였다. LIBS 측정은 펄스형 Nd:YAG 레이저(Minilite II, Continuum, Santa Clara, CA)에서 나오는 1064 nm 에너지 파장의 광원을 시편의 플라즈마를 생성시키는데 사용하였고, 25 mJ/pulse 여기 에너지 빔을 펄스폭 35 ns, 펄스 반복 주기 10 Hz, 노출시간 10 s 동안 시료의 표면에 조사하였다. LIBS 분광은 0.03 nm의 해상력으로 200 nm에서 600 nm의 영역에서 50 m 이하로 분쇄하여 원형 펠렛 형태로 압축시킨 시료를 10 rpm의 속도로 회전시키면서 상온 상압의 실험실 조건에서 수행되었다. LIBS를 이용한 토양 중 주요한 원소의 적정 파장(nm)은 Al(I) 309.2 nm, Ca(I) 422.6 nm, Fe(I) 406.4 nm, Mg(I) 285.2 nm, Na(I) 589.2 nm, Si(I) 288.2 nm, Ti(I) 398.9 nm 이었다. LIBS의 피크강도가 물질 중 원소의 농도가 증가됨에 따라 각 원소의 특정 파장대에서 일정하게 증가되는 것으로 나타나고 있으나 표준물질의 LIBS의 신호비와 원소비를 통해 측정된 검량곡선의 상관계수($r^2$)는 0.863에서 0.977의 범위로 원소별로 상이할 뿐만 아니라 0.98에 미치지 못하였다. 또한, 토양 중 분석대상원소에 대하여 기존 ICP-AES에 의한 표준방법으로 분석된 시료의 측정값과 비교하여 상대적인 오차는 대략적으로 (-)40%에서 80%이상이며, 평균오차는 32.2%로 표준척도 20% 이상을 초과하였다. LIBS에 의한 토양분석은 토양의 조성과 입자의 크기에 따른 매질효과(matrix effect)로 표준물질의 검량곡선에서 결정계수가 낮고, 원소별 함량도 기준의 표준방법과 비교할 때 오차가 컸다. 따라서 LIBS에 의한 토양분석은 정성적인 분석 수준의 정밀도를 보였으며, 토양 매질의 영향을 최소화하기 위하여 기존의 분쇄 펠렛형 시료조제 및 회전측정 이외의 다양한 토양매질의 표준물질(standard reference material)의 확보, 새로운 전처리 방법 및 측정상 방법개선 등 신뢰성 있는 정량 분석을 위한 노력이 필요할 것으로 사료된다.

인산 및 수증기 활성화에 의한 대나무 활성탄 제조 및 특성 연구 (Preparation and Characterization of Bamboo-based Activated Carbon by Phosphoric Acid and Steam Activation)

  • 박정우;리황부;오창호;김승수
    • 청정기술
    • /
    • 제25권2호
    • /
    • pp.129-139
    • /
    • 2019
  • 대나무는 지구상에 존재하는 식물 중 적절한 기후와 토양조건에서 생산성이 가장 높고, 성장속도가 가장 빠른 다년생 식물로 알려져 있다. 전통적으로 아시아에서 대나무는 음식, 건축 및 다양한 재료로 활용되고 있다. 바이오매스 자원으로 대나무는 열분해과정을 거쳐 활성탄으로 제조될 수 있다. 본 연구에서는 탄화온도, 활성화 온도, 시간, 수증기의 양, 그리고 인산의 양 등을 변화에 따른 최적의 대나무 활성탄 제조 연구를 수행하였다. 대나무 탄화 후 수증기 활성화를 위해 $700{\sim}900^{\circ}C$의 온도, $0.8{\sim}1.8mL-H_2O\;g-char^{-1}\;h^{-1}$ 수증기 유량 범위에서 1 ~ 3 h 동안 활성화를 진행하였다. 수증기 유량을 $1.4mL-H_2O\;g-char^{-1}\;h^{-1}$으로 2 h 동안 실험한 결과 활성탄 수율과 비표면적은 각각 2.04 ~ 20.59 wt%, $499.17{\sim}1074.04m^2\;g^{-1}$의 값이 나왔다. 대나무와 인산의 질량비를 1:1로 혼합한 후 $700^{\circ}C$에서 유량 $1.4mL-H_2O\;g-char^{-1}\;h^{-1}$ 속도로 2 h 동안 활성화를 진행한 결과 활성탄 수율과 비표면적은 각각 24.67 wt%, $1389.59m^2\;g^{-1}$의 값이 나타냈다. 제조된 대나무 활성탄을 대상으로 메틸렌블루 흡착 실험을 통해 유사 1차, 2차 속도식 모델을 적용하였으며, 화학적 흡착을 의미하는 유사 2차 속도식에 따랐다.

미세먼지와 산화적 스트레스에 의한 인간 폐 상피 A549 세포에의 ROS 의존적 자가포식 유도 (The Induction of ROS-dependent Autophagy by Particulate Matter 2.5 and Hydrogen Peroxide in Human Lung Epithelial A549 Cells)

  • 박범수;김다혜;황보현;이혜숙;홍수현;정재훈;최영현
    • 생명과학회지
    • /
    • 제32권4호
    • /
    • pp.310-317
    • /
    • 2022
  • 최근 인체에 유해한 요인으로 대기오염의 주성분인 미세먼지에 대한 관심이 증가하고 있다. 특히 직경이 2.5 ㎛ 미만인 PM2.5는 인간의 폐 상피세포에서 자가포식을 동반한 산화적 스트레스를 유발하는 것으로 알려져 있다. 그러나 PM2.5가 산화적 스트레스 하에서 자가포식을 증가시키는지와 이 과정이 ROS 의존적인지에 대한 연구는 충분하지 않은 실정이다. 본 연구에서는 PM2.5가 인간 폐 상피 A594 세포에서 ROS 생성을 통해 자가포식을 촉진하는지를 조사하였다. 우리의 결과에 의하면, PM2.5와 H2O2를 함께 처리한 세포에서는 각각이 단독 처리된 세포에 비하여 세포 생존력이 유의적으로 감소하였으며, 이는 전체 및 미토콘드리아 ROS 생성의 증가와 관련이 있었다. 또한, PM2.5와 H2O2의 동시 처리는 Cyto-ID 염색을 통해 확인된 바와 같이 자가포식 유도의 증가와 LC3, p62 및 beclin 1과 같은 자가포식 바이오 마커 단백질의 발현을 증가시켰다. 그러나 NAC의 전처리에 의하여 ROS의 생성을 인위적으로 차단하였을 경우, PM2.5와 H2O2의 동시 처리에 의한 세포 생존율의 감소와 자가포식 유도는 현저하게 억제되었다. 따라서, PM2.5에 의해 유도된 ROS 생성이 A549 세포에서 자가포식 유도에 중요한 역할을 할 것으로 추측되며, 이는 PM2.5에 의해 유도될 수 있는 폐 기능 손상이 산화적 스트레스 하에서 더욱 증가할 수 있음을 의미한다.

폐포상피세포, 대식세포를 비롯한 각종 세포주에서 H2O2에 의한 Peroxiredoxin 동위효소들의 산화에 따른 불활성화와 재생 (Oxidative Inactivation of Peroxiredoxin Isoforms by H2O2 in Pulmonary Epithelial, Macrophage, and other Cell Lines with their Subsequent Regeneration)

  • 오윤정;김영선;최영인;신승수;박주헌;최영화;박광주;박래웅;황성철
    • Tuberculosis and Respiratory Diseases
    • /
    • 제58권1호
    • /
    • pp.31-42
    • /
    • 2005
  • 배 경 : peroxiredoxins는 거의 모든 생명체에 공통적으로 보존되어 있으며, 최근에 발견된, 특이한 peroxidases로 인체에서 6가지 동위효소가 알려져 있으며, 산화스트레스에 대한 방어역할을 담당하고, $H_2O_2$신호전달 과정에서 중요한 조절 역할을 한다. peroxiredoxin은 $H_2O_2$ 처리 과정 중에서 자신이 산화되어 불활성화 되는데, 산화된 후 다시 재생되는 것으로 보고되나 그 생리적은 의미는 분명하지 않다. 이에 저자들을 폐상 피세포주, 대식세포주, 폐포모세혈관 내피세포주 및 기타 섬유모세포주 들에서 $H_2O_2$ 에 의한 Prx의 산화과정과 재생을 알아보고자 하였다. 방 법 : 수술 환자에서 적출한 정상 폐조직과, 세포주로는 평상시 산화 스트레스에 노출이 많을 것으로 예상되는 세포들로써, 폐포상피세포의 I 형 및 II 형 세포에서 기원한 A549, WI 26, Raw 264.7, Rat2,및 폐포 모세혈관 내피세포주 등을 이용하여 이를 $50{\mu}M$. $100{\mu}M$, $500{\mu}M$$H_2O_2$로 산화시켜 불활성화 한 후, 추적관찰 하였으며, 시간대 별로(0. 10, 30, 60, 120, 240, 480 분) 수확하여, 이를 1차원 non-reducing SDS-PAGE 및 2차원 전기영동로 분리 후, silver stain 과 Western blot으로 분석 하였다. 결 과 : 1. 실험에 사용된 모든 세포주에서, $H_2O_2$ 농도에 비례하여 peroxiredoxin I, II, III 의 불활성화를 관찰할 수 있었고, 10분에 최고로 불활성화되었다. 2. 산화된 이후, 30분경부터 peroxiredoxin 의 재생이 관찰되기 시작 하였으며, 2시간 이후부터 확연하였다. 3. 다시 재생된 peroxiredoxin은 $H_2O_2$투여로서, 다시 불활성화되어, 재생된 Prx 가 활성을 지닌 단백질임을 알 수 있었다. 4. 재생의 속도는 사용된 세포주마다 차이가 있었으며 (A549 >Raw 264.7 >$Rat_2$ >WI26), 단백질 합성억제제인 cycloheximide ($10{\mu}g/ml$) 존재 하에서도 변함 없이 관찰되었다. 결 론 : 세포 내에는 산화되어 불활성화된 peroxiredoxin을 재생하는 체계가 존재 하며, 이는 활성부위 cysteine을 갖는 다른 단백질에도 공통적으로 적용될 수 있는 분자 스위치일 가능성이 높으며, 산화에 의한 신호전달과정이나, 질병 모델에서 Prx 단백의 재생 체계의 이상과 병인에 관한 추가적인 연구가 필요할 것으로 사료된다.