• Title/Summary/Keyword: prestressed concrete beam design

Search Result 95, Processing Time 0.03 seconds

An Indeterminate Strut-Tie Model for Prestressed Concrete Beams (프리스트레스트 콘크리트 보의 부정정 스트럿-타이 모델)

  • Chae, Hyun Soo;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.801-814
    • /
    • 2015
  • In this study, a statically simple indeterminate strut-tie model is proposed for the rational analysis and design of simply supported prestressed concrete beams by reflecting all characteristics of nonlinear structural behavior and load transfer mechanisms. In addition, a load distribution ratio that allows to transform the proposed indeterminate strut-tie model to a determinate model is also suggested to help structural designers conduct the structural analysis and design of simply supported prestressed concrete beams by using the strut-tie model method of current design codes. For verifying of the validity of the proposed model and load distribution ratio, the ultimate strengths of 47 simply supported prestressted concrete beams tested to failure were estimated and the results were compared with those by the strut-tie model methods of current design codes.

Proposal on the Prediction Equation of Ultimate stress of External Tendon for the Prestressed Concrete Beams with External Tendons (외부 PSC 보에서 외부강선의 극한 응력 예측식 제안)

  • Yoo, Sung-Won;Ha, Heon-Jae
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.5
    • /
    • pp.44-53
    • /
    • 2010
  • Recently, the external prestressed concrete structures are increasingly being built. The mechanical behavior of prestressed concrete beams with unbonded tendon is different from that of normal bonded PSC beams in that the increment of tendon stress was derived by whole member behavior. By this reason, the ultimate stress of external tendon is smaller than that of bonded tendon or internal unbonded tendon. However, in the domestic and abroad code, the equation of ultimate stress of external tendon is not suggested yet, and the equation of ultimate stress of internal unbonded tendon is used instead of that of external tendon. Therefore, in this paper, after effective variables of ultimate stress of external tendon were analyzed, the analytical equation of ultimate stress of external tendon was proposed. And the reasonable coefficients were proposed by statistical work of test results of 25 beam with external tendon. Finally, the practical proposed equation of ultimate stress of external tendon was proposed with analytical and statistical model. The equation of ACI-318 and AASHTO 1994 were not matched with test results and had no correlations, and the proposed equation was well matched with test results. So the proposed equation in this paper will be a effective basis for the evaluation of external tendons in analysis and design.

Analytical Study on the Shear Behavior of Prestressed Concrete Deep Beams (프리스트레스트 콘크리트 깊은 보의 전단거동에 관한 해석적 연구)

  • Kim, Tae-Hoon;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.511-517
    • /
    • 2010
  • The purpose of this study is to investigate the shear behavior of prestressed concrete deep beams and to provide the data for development of improved design criteria. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. Hence, in this study, the computer program, named RCAHEST (reinforced concrete analysis in higher evaluation system technology), was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. A bonded or unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. The proposed numerical method for the shear behavior of prestressed concrete deep beams is verified by comparing the analytical results with test data by others.

Design Concept of Beams Reinforced by Deformed Bars and Non-Prestressed Strands in Combination (비긴장강연선과 철근이 혼용된 보의 설계방안)

  • Noh, Sam-Young;Jo, Min-Joo;Kim, Jong-Sung;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.18-29
    • /
    • 2013
  • A new precast concrete (PC) beam and column connection system using non-prestressed wire strands was recently developed. The system is composed of one unit of two-storied PC-column and PC-beams with U-shaped ends. The connection part of the column and beams is reinforced by deformed bars and non-prestressed wire strands in combination for the improvement of workability. Structural performance of this system was verified by several experimental studies. The purpose of this study is developing a design concept of the beam reinforced by deformed bars and non-prestressed wire strands in combination, in terms of the cross-sectional analysis, based on the preceded experiment. A minimum and maximum reinforcement ratio and the calculation formula for the strength of flexural member reinforced by reinforcements having different yield strengths are derived based on KBC2009. Under consideration existing research results for the application of high strength reinforcement bars, the design yield strength of the non-prestressed wire strand is suggested. An example for the cross section design, satisfying the serviceability requirements, demonstrates the applicability of the design concept developed in the study.

A Study on Load distribution Effect for Bridge Structures (교량 구조의 하중분배 효과에 관한 연구)

  • 정철헌;오병환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.234-239
    • /
    • 1992
  • Design live load and girder distribution factors play an important role in the current design procedures. The fraction of vehicle load effect transferred to a single member may be selected in accordance with current KBDC. However, the specified values, both design load and distribution factors involve considerable inaccuracies, These inaccuracies relate to the uncertainties of the structural analysis, especially any bias and scatter which drives from the use of simplified load distribution factors. In this study , based on several field measurement and finite element analysis, live load distribution effects of current KBDC are evaluated. The final values of the bias and coefficient of variation of "g"according to bridge type are determined. The bridge types are reinforced concrete slab, prestressed concrete girder and steel l-beam.el l-beam.

  • PDF

Flexural ductility of reinforced and prestressed concrete sections with corrugated steel webs

  • Chen, X.C.;Au, F.T.K.;Bai, Z.Z.;Li, Z.H.;Jiang, R.J.
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.625-642
    • /
    • 2015
  • Prestressed concrete bridges with corrugated steel webs have emerged as one of the promising bridge forms. This structural form provides excellent structural efficiency with the concrete flanges primarily taking bending and the corrugated steel webs primarily taking shear. In the design of this type of bridges, the flexural ductility and deformability as well as strength need to be carefully examined. Evaluation of these safety-related attributes requires the estimation of full-range behaviour. In this study, the full-range behaviour of beam sections with corrugated steel webs is evaluated by means of a nonlinear analytical method which uses the actual stress-strain curves of the materials and considers the path-dependence of materials. In view of the different behaviour of components and the large shear deformation of corrugated steel webs with negligible longitudinal stiffness, the assumption that plane sections remain plane may no longer be valid. The interaction between shear deformation and local bending of flanges may cause additional stress in flanges, which is considered in this study. The numerical results obtained are compared with experimental results for verification. A parametric study is undertaken to clarify the effects of various parameters on ductility, deformability and strength.

Tests on Transfer Bond Performance of Epoxy Coated Prestressing Strands (에폭시 코팅 처리된 PS강선의 정착부착성능 실험)

  • 유승룡
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.1
    • /
    • pp.89-100
    • /
    • 1994
  • The current test procedure for transfer length, which determine transfer length by measuring concrete strain, has an actual bond stress state in the prestressed pretensioned member : however, it is difficult to determine the bond properties of maximum bond stress and bond stiffness with this method. It is also difficult for design engineer to understand and select a correct safety criterion from the widely distributed results of such a ransfer test alone. An alternative testing procedure is provided here to determine the bond properties without measuring the concrete strain. In this test the bond stress is measured directly by creating a similar boundary condition within the transfer length in a real beam during the transfer of prestressing force. The prestressing force was released step by step by step from the unloading side. The release of force induces a swelling of the strand at the unloading side of concrete block, bonding force in the block, and a bond slip of the strand toward the other side of the block. Two center-hole load cells are used to record the end loads until the point of general bond slip(maximum bond stress). It is suggested that this test procedure be performed with the ordinary transfer test when determining the transfer length in a prestressed, pretensioned concrete beam.

Shear lag effect in steel-concrete composite beam in hogging moment

  • Luo, Da;Zhang, Zhongwen;Li, Bing
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.27-41
    • /
    • 2019
  • Shear lag effect can be an important phenomenon to consider in design of the steel-concrete composite beams. Researchers have found that the effect can be strongly related with the moment distribution, the stiffness and the ductility of the composite beams. For continuous composite beams expected to sustain hogging moment, the shear lag effect can be more distinct as cracking of the concrete slab reduces its shear stiffness. Despite its influences on behaviour of the steel-concrete composite beams, a method for calculating the shear lag effect in steel-concrete composite beams sustaining hogging moment is still not available. Shear lag effect in steel-concrete composite beams sustaining hogging moment is investigated in this paper. A method was proposed specifically for predicting the effect in the cracked part of the steel-concrete composite beam. The method is validated against available experimental data. At last, FE studies are conducted for steel-concrete composite beams with different design parameters, loading conditions and boundary conditions to further investigate the shear lag effect and compare with the proposed method.

Optimization for Precast Prestressed Wide-U Beams with the Least Depth (최소깊이 프리캐스트 프리스트레스트 U형보의 최적화)

  • Yul Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.18-26
    • /
    • 2004
  • The cost of underground work is a dominant factor to determine the total construction fee. It is generally 2 ${\~}$ 2.5 times higher than that of above ground for building with the same height. 'A new precast prestressed framing plan for underground parking building' was suggested with the beam of the least depth - U-type beams. The depth of regular rectangular reinforced concrete beam which is currently used in the underground parking of apartments could be reduced up to 12 ${\~}$ 34cm/story due to the development of a U-beams from the optimum process. Two full scale prototype U-beams were tested in this study. It was found that the Wide U-beams in the test showed higher strength than calculated nominal and design, however need to provide temporary supports to meet the flexural moment of construction load at the simply supported state before the lopping concrete hardens.

Reliability-based calibration for performance-based design of concrete structures with material and member resistance factors (재료저항계수와 부재저항계수를 적용한 콘크리트 성능설계의 신뢰도기반 계수보정)

  • Paik, In-Yeol;Shin, Soo-Bon;Bang, Dae-Jae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.145-148
    • /
    • 2008
  • Recently, most of the international design code for concrete structures are trying to develope performance-based design specification with the limit state concept. To accomplish this object, it is necessary to define required performance and to measure the performance level of structure. The reliability index is one of the most attractive indexes to express the level of performance. In this paper, prestressed concrete beam is designed following member resistance factor and material resistance factor format and the reliability indexes are obtained and compared for different sets of resistance factors. Compatible sets of safety factors could be calibrated for given level of target reliability index applying the similar method presented in this paper.

  • PDF