• 제목/요약/키워드: prestressed concrete beam

검색결과 240건 처리시간 0.022초

Further study on improvement on strain concentration in through-diaphragm connection

  • Qin, Ying;Zhang, Jingchen;Shi, Peng;Chen, Yifu;Xu, Yaohan;Shi, Zuozheng
    • Steel and Composite Structures
    • /
    • 제39권2호
    • /
    • pp.135-148
    • /
    • 2021
  • Hollow structural section (HSS) columns have been increasingly popular due to their structural and architectural merits. However, practical difficulty lies in developing proper connections. The through-diaphragm connections are considered as suitable connection type that is widely adopted in Asian countries. However, the stress concentration occurs at the location connecting through-diaphragm and steel beam. Furthermore, the actual load path from the beam flange is not uniformly transferred to the HSS column as conventionally assumed. In this paper, tensile tests were further conducted on three additional specimens with beam flange plate to evaluate the load versus displacement response. The load-displacement curves, yield and ultimate capacity, ductility ratio were obtained. Furthermore, the strain development at different loading levels was discussed comprehensively. It is shown that the studied connection configuration significantly reduces the stress concentration. Meanwhile, simplified trilinear load-displacement analytical model for specimen under tensile load was presented. Good agreement was found between the theoretical and experimental results.

Balanced Ratio of Concrete Beams Internally Prestressed with Unbonded CFRP Tendons

  • Lee, C.;Shin, S.;Lee, H.
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권1호
    • /
    • pp.1-16
    • /
    • 2017
  • The compression or tension-controlled failure mode of concrete beams prestressed with unbonded FRP tendons is governed by the relative amount of prestressing tendon to the balanced one. Explicit assessment to determine the balanced reinforcement ratio of a beam with unbonded tendons (${\rho}^U_{pfb}$) is difficult because it requires a priori knowledge of the deformed beam geometry in order to evaluate the unbonded tendon strain. In this study, a theoretical evaluation of ${\rho}^U_{pfb}$ is presented based on a concept of three equivalent rectangular curvature blocks for simply supported concrete beams internally prestressed with unbonded carbon-fiber-reinforced polymer (CFRP) tendons. The equivalent curvature blocks were iteratively refined to closely simulate beam rotations at the supports, mid-span beam deflection, and member-dependent strain of the unbonded tendon at the ultimate state. The model was verified by comparing its predictions with the test results. Parametric studies were performed to examine the effects of various parameters on ${\rho}^U_{pfb}$.

Experiments and theory for progressive collapse resistance of ECC-concrete composite beam-column substructures

  • Weihong Qin;Wang Song;Peng Feng;Zhuo Xi;Tongqing Zhang
    • Structural Engineering and Mechanics
    • /
    • 제85권1호
    • /
    • pp.65-80
    • /
    • 2023
  • To explore the effect of Engineered Cementitious Composite (ECC) on improving the progressive collapse resistance of reinforced concrete frames under a middle column removal scenario, six beam-column substructures were tested by quasistatic vertical loading. Among the six specimens, four were ECC-concrete composite specimens consisting of different depth of ECC at the bottom or top of the beam and concrete in the rest of the beam, while the other two are ordinary reinforced concrete specimens with different concrete strength grades for comparison. The experimental results demonstrated that ECC-concrete composite specimens can improve the bearing capacity of a beam-column substructure at the stages of compressive arch action (CAA) and catenary action in comparison with ordinary concrete specimen. Under the same depth of ECC, the progressive collapse resistance of a specimen with ECC at the beam bottom was superior to that at the beam top. With the increase of the proportion of ECC arranged at the beam bottom, the bearing capacity of a composite substructure was increased, but the increase rate slows down with the proportion. Meanwhile, the nonlinear numerical analysis software MSC Marc was used to simulate the whole loading process of the six specimens. Theoretical formulas to calculate the capacities of ECC-concrete composite specimens at the stages of flexural action, CAA and catenary action are proposed. Based on the research results, this study suggests that ECC should be laid out at the beam bottom and the layout depth should be within 25% of the total beam depth.

Factors governing redistribution of moment in continuous prestressed concrete beams

  • Kodur, V.K.R.;Campbell, T.I.
    • Structural Engineering and Mechanics
    • /
    • 제8권2호
    • /
    • pp.119-136
    • /
    • 1999
  • The failure load of a continuous prestressed concrete beam depends partially on the amount of redistribution of moment that occurs prior to failure. Results from a parametric study, carried out using a nonlinear finite element computer program, are presented to demonstrate the influences of various factors on redistribution of moment in two-span, continuous bonded prestressed concrete beams. Trends in the data from the numerical studies are compared with those from a theoretical expression for percentage of redistribution, and it is shown that the redistribution of moment occurring in a continuous prestressed concrete beam is a function of number of parameters.

포스트텐셔닝 공법의 프리트스레스트 고강도 빔부재의 균열 및 극한 거동 (An Cracking and Ultimate Behavior of Post-tensioned Prestressed High Strength Concrete Beams)

  • 이성철;최영철;오병환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.323-326
    • /
    • 2005
  • Although many structures. with high strength concrete have been recently constructed, the flexural behavior of reinforced and prestressed concrete beams with high strength concrete is not exactly defined. This paper presents an experimental study on the flexural strength of the high strength concrete beams. Five large scale beams simply supported were tested and measured. Each beam was loaded by two symmetrical concentrated loads applied at 1.25m from the center of span. The concrete strength, the prestressed force and longitudinal tensile reinforcement ratio vary from beam to beam. From the experimental tests, the flexural strength from tests is larger than the nominal flexural strength of codes. Moreover, the initial crack-load is affected by the prestressed force and the crack width and spacing are controlled by the longitudinal tensile reinforcement ratio.

  • PDF

Design procedure for prestressed concrete beams

  • Colajanni, Piero;Recupero, Antonino;Spinella, Nino
    • Computers and Concrete
    • /
    • 제13권2호
    • /
    • pp.235-253
    • /
    • 2014
  • The theoretical basis and the main results of a design procedure, which attempts to provide the optimal layout of ordinary reinforcement in prestressed concrete beams, subjected to bending moment and shear force are presented. The difficulties encountered in simulating the actual behaviour of prestressed concrete beam in presence of coupled forces bending moment - shear force are discussed; particular emphasis is put on plastic models and stress fields approaches. A unified model for reinforced and prestressed concrete beams under axial force - bending moment - shear force interaction is provided. This analytical model is validated against both experimental results collected in literature and nonlinear numerical analyses. Finally, for illustrating the applicability of the proposed procedure, an example of design for a full-scale prestressed concrete beam is shown.

Camber calculation of prestressed concrete I-Girder considering geometric nonlinearity

  • Atmaca, Barbaros;Ates, Sevket
    • Computers and Concrete
    • /
    • 제19권1호
    • /
    • pp.1-6
    • /
    • 2017
  • Prestressed concrete I-girders are subject to different load types at their construction stages. At the time of strand release, i.e., detensioning, prestressed concrete girders are under the effect of dead and prestressing loads. At this stage, the camber, total net upward deflection, of prestressed girder is summation of the upward deflection due to the prestressing force and the downward deflection due to dead loads. For the calculation of the upward deflection, it is generally considered that prestressed concrete I-girder behaves linear-elastic. However, the field measurements on total net upward deflection of prestressed I-girder after detensioning show contradictory results. In this paper, camber calculations with the linear-elastic beam and elastic-stability theories are presented. One of a typical precast I-girder with 120 cm height and 31.5 m effective span length is selected as a case study. 3D finite element model (FEM) of the girder is developed by SAP2000 software, and the deflections of girder are obtained from linear and nonlinear-static analyses. Only geometric nonlinearity is taken into account. The material test and field measurement of this study are performed at prestressing girder plant. The results of the linear-elastic beam and elastic-stability theories are compared with FEM results and field measurements. It is seen that the camber predicted by elastic-stability theory gives acceptable results than the linear-elastic beam theory while strand releasing.

프리스트레스트 콘크리트 Beam 교량의 콘크리트 강도 평가를 위한 비파괴 검사 (A Non-Destructive Test for Strength Evaluation of Prestressed Concrete Beam Bridges)

  • 한경봉;천영덕;박선규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제3권1호
    • /
    • pp.113-120
    • /
    • 1999
  • Due to the heterogeneous nature of a concrete, periodic inspections are compulsory to maintenance of quality of concrete structures. The major object of this study is to analyze and investigate experimentally the experimental equation for the estimate of compressive strength of prestressed concrete. In this study, surface hardness method, ultrasonic method are investigated to evaluate strength of concrete specimens. Specimens are cast in laboratory and cores are cut from specimens in order to estimate the accurate strength. These values are used to compare with calculated values from test data. The result shows that the proposed equation can reproduce the results at prestressed concrete beam girders more appropriately than previous equations.

  • PDF

외부강선으로 보강된 PSC 교량의 시공단계별 비선형 해석 (Nonlinear analysis of PSC bridge with strengthened of externally tendon Considering Construction Sequences)

  • 박재근;이병주;김문영;신현목
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.283-288
    • /
    • 2007
  • This paper presents an analytical prediction of Nonlinear characteristics of prestressed concrete bridges by strengthened of externally tendon considering the work sequence, using beam-column element based on flexibility method and tendon element. The beam-column element was developed with reinforced concrete material nonlinearities which are based on the smeared crack concept. The fiber hysteresis rule of beam-column element is derived from the uniaxial constitutive relations of concrete and reinforcing steel fibers. The tendon element represent the bonded tendon and unbonded tendon behaviors. Beam-column element and tendon element was be subroutine A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of RC and PSC structures was used. The proposed numerical method for prestressed concrete structures by strengthened of externally tendon is verified by comparison with reliable experimental results.

  • PDF

Rapid assessment of suspension bridge deformation under concentrated live load considering main beam stiffness: An analytical method

  • Wen-ming Zhang;Jia-qi Chang;Xing-hang Shen;Xiao-fan Lu;Tian-cheng Liu
    • Structural Engineering and Mechanics
    • /
    • 제88권1호
    • /
    • pp.53-65
    • /
    • 2023
  • With the gradual implementation of long-span suspension bridges into high-speed railway operations, the main beam's bending stiffness contribution to the live load response permanently grows. Since another critical control parameter of railway suspension bridges is the beam-end rotation angle, it should not be ignored by treating the main beam deflection as the only deformation response. To this end, the current study refines the existing method of the main cable shape and simply supported beam bending moment analogy. The bending stiffness of the main beam is considered, and the main beam's analytical expressions of deflection and rotation angle in the whole span are obtained using the cable-beam deformation coordination relationship. Taking a railway suspension bridge as an example, the effectiveness and accuracy of the proposed analytical method are verified by the finite element method (FEM). Comparison of the results by FEM and the analytical method ignoring the main beam stiffness revealed that the bending stiffness of the main beam strongly contributed to the live load response. Under the same live load, as the main beam stiffness increases, the overall deformation of the structure decreases, and the reduction is particularly noticeable at locations with original larger deformations. When the main beam stiffness is increased to a certain extent, the stiffening effect is no longer pronounced.