• Title/Summary/Keyword: prestress level

Search Result 31, Processing Time 0.034 seconds

Efficient Design Procedure of Concrete Dome and Ring Beam in Containment Structures (콘크리트 격납구조물 돔 및 링빔의 효율적인 설계 기법)

  • Jeon, Se-Jin;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.139-140
    • /
    • 2010
  • Combined analysis is required for the concrete dome and ring beam of containment structure due to the interaction in section forces. In this study, an efficient design procedure is proposed that can be used to determine the preliminary sections of the dome and ring beam as well as a proper level of prestress in the ring beam, prior to a detailed design. The procedure applies the membrane theory of the shell of revolution.

  • PDF

Effects of Replacement Level of Expansion Admixture on the Mechanical Properties of SHCC (팽창재 치환율에 따른 SHCC의 역학적 특성)

  • Ryu, Seung-Hyun;Nam, Sang-Hyun;Cha, Jun-Ho;Lee, Young-Oh;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.269-270
    • /
    • 2010
  • It is unavoidable for concrete in a structure to crack due to drying shrinkage. Using an expansion admixture can reduce an initial shrinkage crack and improve a prestress. Therefore, this paper presents the results of a study performed to evaluate this deformation and obtain a better understanding of the behavior of SHCC using an expansion admixture. To evaluate a performance of SHCC using an expansion admixture, was tested a drying shrinkage, compressive strength.

  • PDF

Cyclic performance of concrete beams reinforced with CFRP prestressed prisms

  • Liang, Jiongfeng;Deng, Yu;Hu, Minghua;Tang, Dilian
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.227-232
    • /
    • 2017
  • This paper describes an experimental study of the cyclic performance of concrete beams reinforced with CFRP prestressed concrete prisms (PCP). The failure modes, hysteretic loops, skeleton curve, ductility, energy dissipation capacity and stiffness degradation of concrete beams reinforced with CFRP prestressed concrete prisms were analyzed. The results show that The CFRP prestressed prisms reinforced concrete beams have good seismic performance. The level of effective prestress and cross section of CFRP prestressed prisms had a little influence on the bearing capacity, the ductility and energy dissipation capacity of CFRP prestressed prisms reinforced concrete beams.

Strengthening performance of RC beams strengthened by bonded or unbonded prestressed CFRP laminates (부착 또는 비부착된 탄소판으로 긴장 보강한 RC보의 보강성능)

  • Park, Jong-Sup;Park, Young-Hwan;You, Young-Jun;Jung, Woo-Tai;Kang, Jae-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.279-282
    • /
    • 2005
  • This study investigates the flexural behavior and strengthening performance of RC beams strengthened by prestressed CFRP laminates through static bending tests. Tests on RC beams strengthened with prestressed CFRP laminates were carried out for both cases where the CFRP laminates were bonded or not and the corresponding effects on the strengthening performances of RC beams were examined. Experimental results revealed that RC beams strengthened with prestressed CFRP laminates presented increased crack load and yield load according to the level of prestress. Premature debonding occurred before the RC beam strengthened with bonded prestressed CFRP laminates reaches the maximum load, and the specimen presented similar behavior to the one exhibited by the specimen with unbonded laminates.

  • PDF

An Extended Force Density Method for the form finding of cable systems with new forms

  • Malerba, P.G.;Patelli, M.;Quagliaroli, M.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.191-210
    • /
    • 2012
  • The Force Density Method (FDM) is a well known and extremely versatile tool in form finding of cable nets. In its linear formulation such method makes it possible to find all the possible equilibrium configurations of a net of cables having a certain given connectivity and given boundary conditions on the nodes. Each singular configuration corresponds to an assumed force density distribution. Its improvement as Non-Linear Force Density Method (NLFDM) introduces the possibility of imposing assigned relative distances among the nodes, the tensile level in the elements and/or their initial undeformed length. In this paper an Extended Force Density Method (EFDM) is proposed, which makes it possible to set conditions in terms of given fixed nodal reactions or, in other words, to fix the positions of a certain number of nodes and, at the same time, to impose the intensity of the reaction force. Through such extension, the (EFDM) enables us to deal with form findings problems of cable nets subjected to given constraints and, in particular, with mixed structures, made of cables and struts. The efficiency and the robustness of method are assessed through comparisons with other form finding techniques in dealing with characteristic applications to the prestress design of cable systems. As a further extension, the EFDM is applied to structures having some parts not yet geometrically defined, as can happen in designing new creative forms.

Repair of flange damage steel-concrete composite girders using CFRP sheets

  • Wang, Lianguang;Hou, Wenyu;Han, Huafeng;Huo, Junhua
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.511-523
    • /
    • 2015
  • Damaged steel-concrete composite girders can be repaired and retrofitted by epoxy-bonded carbon fiber-reinforced polymer (CFRP) sheets to the critical areas of tension flanges. This paper presents the results of a study on the behavior of damaged steel-concrete composite girders repaired with CFRP sheets under static loading. A total of seven composite girders made of I20A steel sections and 80mm-thick by 900mm-wide concrete slabs were prepared and tested. CFRP sheets and prestressed CFRP sheets were used to repair the specimens. The specimens lost the cross-sectional area of their tension flanges with 30%, 50% and 100%. The results showed that CFRP sheets had no significant effect on the yield loads of strengthened composite girders, but had significant effect on the ultimate loads. The yield loads, elastic stiffness, and ultimate bearing capacities of strengthened composite girders had been changed as a result of prestressed CFRP sheets, the utilization ratio of CFRP sheets could be effectively improved by applying prestress to CFRP sheets. Both the yield loads and ultimate bearing capacities had been changed as a result of steel beam's flange damage level and CFRP sheets could cover the girders' shortage of bearing capacity with 30% and 50% flange damage, respectively.

Improvement of Structural Performance for the Precast Box Culvert (지하 프리캐스트 박스 암거의 구조적 성능 개선에 관한 연구)

  • 조병완;태기호;이계삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.393-398
    • /
    • 2000
  • To use concrete box culverts effectively, precast goods are manufactured at a factory, then linked and anchored with prestressing tendon at a field. However, the corrosion of rebar and prestressing tendon in the box culverts utilizing portland cement concrete is issued when the cracks occur at a underground water level. It has been reported that reported that expansive concrete, compared with portland cement concrete, has many structural advantages such as increasing capacity of watertight, controling initial crack and improving durability due to its property of expansion. During flexure test with RC beam made from expansive concrete, in the case of a constant section of concrete element, the lower steel ratio is, and in the case of a constant steel ratio, the more incremental the section of concrete element, the more incremental the amount of chemical prestress by expansive concrete is. At the segment of the box culverts using expansive concrete, the numbers of crack and its gap is reduced, and ultimate load and initial crack load is much larger than the segment at which expansive concrete is nor used. Also lay-out of tendon with a curvature generate upward force so that deflection is reduced. Through the whole procedure, it could be confirmed that performance precast box culvert by means of using expansive concrete is improved.

  • PDF

Nonlinear finite element based parametric and stochastic analysis of prestressed concrete haunched beams

  • Ozogul, Ismail;Gulsan, Mehmet E.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.207-224
    • /
    • 2022
  • The mechanical behavior of prestressed concrete haunched beams (PSHBs) was investigated in depth using a finite element modeling technique in this study. The efficiency of finite element modeling was investigated in the first stage by taking into account a previous study from the literature. The first stage's findings suggested that finite element modeling might be preferable for modeling PSHBs. In the second stage of the research, a comprehensive parametric study was carried out to determine the effect of each parameter on PSHB load capacity, including haunch angle, prestress level, compressive strength, tensile reinforcement ratio, and shear span to depth ratio. PSHBs and prestressed concrete rectangular beams (PSRBs) were also compared in terms of capacity. Stochastic analysis was used in the third stage to define the uncertainty in PSHB capacity by taking into account uncertainty in geometric and material parameters. Standard deviation, coefficient of variation, and the most appropriate probability density function (PDF) were proposed as a result of the analysis to define the randomness of capacity of PSHBs. In the study's final section, a new equation was proposed for using symbolic regression to predict the load capacity of PSHBs and PSRBs. The equation's statistical results show that it can be used to calculate the capacity of PSHBs and PSRBs.

Permeability of Magnetic Flux of PS Steel for Variation of Stress and Temperature (긴장재의 응력 및 온도변화에 따른 자속투과율)

  • Park, Jin Su;Kim, Byeong Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.323-331
    • /
    • 2022
  • An experimental study was conducted to investigate the effect of applied tensile force and temperature on the permeability of magnetic flux in prestressing steel. The permeability of magnetic flux is the ratio at which the magnetic flux between two points passes. The prestressing steel used in these experiments included a 7-mm PS wire mainly used for cable-stayed bridges and a 12.7-mm PS strand for prestressed concrete bridges. The experiments to extract the permeability of the magnetic flux of steel wire and strand were conducted under various tensile levels and temperature conditions. From the experimental results, it was observed that the permeability of magnetic flux of the PS tension material was linearly proportional to the applied tensile stress level, and inversely proportional to the temperature. If the experimental relationship among the magnetic permeability, temperature, and prestressing ratio of a PS tension material is known in advance, the current tension stress level on PS members can be evaluated by measuring solely the magnetic permeability and temperature.

An Experimantal Study on Flexural Behavior of RC Beams Strengthened with Near Surface Mounted Prestressed FRP (프리스트레스를 도입한 FRP 표면매립 보강보의 휨거동에 관한 실험적 연구)

  • Hong, Sung-Nam;Park, Jun-Myung;Park, Sun-Kyu;Park, Jong-Sup;Park, Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.737-742
    • /
    • 2006
  • Strengthening concrete structures with fiber reinforced polymer materials have grown to be a widely used method over most parts of the world today, which FRP was developed in 1960. A method to apply prestressing force to FRP is developed newly in these days, which can use the maximum performance of FRP materials. This paper presents the results of a study on improvement in flexural capacities of RC beams strenthened with near surface mounted prestressed CFRP rod and plate. Experimental variables include type of CFRP, prestressing level. Tests show that prestressed beams exhibit a higher crack-load as well as a higher steel-yielding load compared to non-prestressed strengthened beams.