• Title/Summary/Keyword: prestress force identification

Search Result 10, Processing Time 0.022 seconds

Identification of prestress force in a prestressed Timoshenko beam

  • Lu, Z.R.;Liu, J.K.;Law, S.S.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.3
    • /
    • pp.241-258
    • /
    • 2008
  • This paper presents a new identification approach to prestress force. Firstly, a bridge deck is modeled as a prestressed Timoshenko beam. The time domain responses of the beam under sinusoidal excitation are studied based on modal superposition. The prestress force is then identified in the time domain by a system identification approach incorporating with the regularization of the solution. The orthogonal polynomial function is used to improve the noise effect and obtain the derivatives of modal responses of the bridge. Good identification results are obtained from only the first few measured modal data under both sinusoidal and impulsive excitations. It is shown that the proposed method is insensitive to the magnitude of force to be identified and can be successfully applied to indirectly identify the prestress force as well as other physical parameters, such as the flexural rigidity and shearing rigidity of a beam even under noisy environment.

Prestress-Loss Monitoring Technique for Prestressd Concrete Girders using Vibration-based System Identification (진동기반 구조식별을 통한 프리스트레스트 콘크리트 거더의 긴장력 손실 검색 기법)

  • Ho, Duc-Duy;Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.123-132
    • /
    • 2010
  • This paper presents a prestress-loss monitoring technique for prestressed concrete (PSC) girder structures that uses a vibration-based system identification method. First, the theoretical backgrounds of the prestress-loss monitoring technique and the system identification technique are presented. Second, vibration tests are performed on a lab-scaled PSC girder for which the modal parameter was measured for several prestress-force cases. A numerical modal analysis is performed by using an initial finite element (FE) model from the geometric, material, and boundary conditions of the lab-scaled PSC girder. Third, a vibration-based system identification is performed to update the FE model by identifying structural parameters since the natural frequency of the FE model became identical to the experimental results. Finally, the feasibility of the prestress-loss monitoring technique is evaluated for the PSC girder model by using the experimentally measured natural frequency and numerically identified natural frequency for several prestress-force cases.

Prestress and excitation force identification in a prestressed concrete box-girder bridge

  • Xiang, Ziru;Chan, Tommy H.T.;Thambiratnam, David P.;Nguyen, Andy
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.617-625
    • /
    • 2017
  • Prestress force identification (PFI) is crucial to maintain the safety of prestressed concrete bridges. A synergic identification method has been proposed recently by the authors that can determine the prestress force (PF) and the excitation force simultaneously in prestressed concrete beams with good accuracy. In this paper, the ability of this method in the application with prestressed concrete box-girder bridges is demonstrated. A reasonable assumption is made to capture the similarity of the dynamic behavior of the prestressed concrete box-girder bridge and a beam under a certain loading scenario, and the feasibility of this method for application in a prestressed box-girder bridge is affirmed. A comprehensive laboratory test program is conducted, and the effects of PF, excitation, measuring time and uncertainties are studied. Results show that the proposed method can predict the PF and the excitation force in a prestressed concrete box-girder accurately and has a great robustness against uncertainties.

A SENSITIVITY ANALYSIS OF THE KEY PARAMETERS FOR THE PREDICTION OF THE PRESTRESS FORCE ON BONDED TENDONS

  • Jang, Jung-Bum;Lee, Hong-Pyo;Hwang, Kyeong-Min;Song, Young-Chul
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.319-328
    • /
    • 2010
  • Bonded tendons have been used in reactor buildings at some operating nuclear power plants in Korea. Assessing prestress force on these bonded tendons has become an important pending problem in efforts to assure continued operation beyond their design life. The System Identification (SI) technique was thus developed to improve upon the existing indirect assessment technique for bonded tendons. As a first step, this study analyzed the sensitivity of the key parameters to prestress force, and then determined the optimal parameters for the SI technique. A total of six scaled post-tensioned concrete beams with bonded tendons were manufactured. In order to investigate the correlation of the natural frequency and the displacement to prestress force, an impact test, a Single Input Multiple Output (SIMO) sine sweep test, and a bending test using an optical fiber sensor and compact displacement transducer were carried out. These tests found that both the natural frequency and the displacement show a good correlation with prestress force and that both parameters are available for the SI technique to predict prestress force. However, displacements by the optical fiber sensor and compact displacement transducer were shown to be more sensitive than the natural frequency to prestress force. Such displacements are more useful than the natural frequency as an input parameter for the SI technique.

Multi-Phase Model Update for System Identification of PSC Girders under Various Prestress Forces

  • Ho, Duc-Duy;Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.579-592
    • /
    • 2010
  • This paper presents a multi-phase model update approach for system identification of prestressed concrete (PSC) girders under various prestress forces. First, a multi-phase model update approach designed on the basis of eigenvalue sensitivity concept is newly proposed. Next, the proposed multi-phase approach is evaluated from controlled experiments on a lab-scale PSC girder for which forced vibration tests are performed for a series of prestress forces. On the PSC girder, a few natural frequencies and mode shapes are experimentally measured for the various prestress forces. The corresponding modal parameters are numerically calculated from a three-dimensional finite element (FE) model which is established for the target PSC girder. Eigenvalue sensitivities are analyzed for potential model-updating parameters of the FE model. Then, structural subsystems are identified phase-by-phase using the proposed model update procedure. Based on model update results, the relationship between prestress forces and model-updating parameters is analyzed to evaluate the influence of prestress forces on structural subsystems.

A Study on the Determination of the Optimal Parameter for the Evaluation of the Effective Prestress Force on the Bonded Tendon (부착식 텐던의 유효 긴장력 평가를 위한 최적의 매개변수 결정에 관한 연구)

  • Jang, Jung Bum;Lee, Hong Pyo;Hwang, Kyeong Min;Song, Young Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.161-168
    • /
    • 2010
  • The bonded tendon was adopted to the reactor building of some operating nuclear power plants in Korea and the assessment of the effective prestress force on the bonded tendon is being issued as an important pending problem for continuous operation beyond their design life. The sensitivity analysis of various parameters was carried out to evaluate the effective prestress force using the system identification technique and the optimal parameters were determined for SI technique in this study. The 1/5 scaled post-tensioned concrete beams with the bonded tendon type were manufactured and in order to investigate the relationship of the natural frequency and the displacement to the effective prestress force, impact test, SIMO sine sweep test and bending test using the optical fiber sensor and the compact displacement transducer were carried out. As a result of tests, both the natural frequency and the displacement show the good relationship with the effective prestress force and both parameters are available for the SI technique to estimate the effective prestress force.

Synergic identification of prestress force and moving load on prestressed concrete beam based on virtual distortion method

  • Xiang, Ziru;Chan, Tommy H.T.;Thambiratnam, David P.;Nguyen, Theanh
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.917-933
    • /
    • 2016
  • In a prestressed concrete bridge, the magnitude of the prestress force (PF) decreases with time. This unexpected loss can cause failure of a bridge which makes prestress force identification (PFI) critical to evaluate bridge safety. However, it has been difficult to identify the PF non-destructively. Although some research has shown the feasibility of vibration based methods in PFI, the requirement of having a determinate exciting force in these methods hinders applications onto in-service bridges. Ideally, it will be efficient if the normal traffic could be treated as an excitation, but the load caused by vehicles is difficult to measure. Hence it prompts the need to investigate whether PF and moving load could be identified together. This paper presents a synergic identification method to determine PF and moving load applied on a simply supported prestressed concrete beam via the dynamic responses caused by this unknown moving load. This method consists of three parts: (i) the PF is transformed into an external pseudo-load localized in each beam element via virtual distortion method (VDM); (ii) then these pseudo-loads are identified simultaneously with the moving load via Duhamel Integral; (iii) the time consuming problem during the inversion of Duhamel Integral is overcome by the load-shape function (LSF). The method is examined against different cases of PFs, vehicle speeds and noise levels by means of simulations. Results show that this method attains a good degree of accuracy and efficiency, as well as robustness to noise.

Identification of prestress-loss in PSC beams using modal information

  • Kim, Jeong-Tae;Yun, Chung-Bang;Ryu, Yeon-Sun;Cho, Hyun-Man
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.467-482
    • /
    • 2004
  • One of the uncertain damage parameters to jeopardize the safety of existing PSC bridges is the loss of the prestress force. A substantial prestress-loss can lead to severe problems in the serviceability and safety of the PSC bridges. In this paper, a nondestructive method to detect prestress-loss in beam-type PSC bridges using a few natural frequencies is presented. An analytical model is formulated to estimate changes in natural frequencies of the PSC bridges under various prestress forces. Also, an inverse-solution algorithm is proposed to detect the prestress-loss by measuring the changes in natural frequencies. The feasibility of the proposed approach is evaluated using PSC beams for which a few natural frequencies were experimentally measured for a set of prestress-loss cases. Numerical models of two-span continuous PSC beams are also examined to verify that the proposed algorithm works on more complicated cases.

Feasibility Study of Estimating Prestress Force of Grouted Tendons (종진동특성을 이용한 부착식 텐던의 긴장력 추정 타당성 연구)

  • Kim, Byeong Hwa;Jang, Jung Bum;Lee, Hong Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.103-111
    • /
    • 2010
  • A feasibility study for nondestructively estimating prestress force of a grouted tendon using axial vibrations has been investigated. Total eight prestressed concrete beams with different stress levels have been specially designed and constructed for this investigation. The various axial vibration tests have been conducted in order to extract the dynamic characteristics of the prestressed concrete beams. It turns out that the axial frequency, elastic wave velocity and elastic modulus are nonlinearly increased as the prestress force level increases. It seems that the axial vibration characteristics of the existing grouted tendons are a feasible indicator for the identification of their tensile force.

Prestress evaluation in continuous PSC bridges by dynamic identification

  • Breccolotti, Marco;Pozzaa, Francesco
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.4
    • /
    • pp.463-488
    • /
    • 2018
  • In the last decades, research efforts have been spent to investigate the effect of prestressing on the dynamic behaviour of prestressed concrete (PSC) beams. Whereas no agreement has been reached among the achievements obtained by different Researchers and among the theoretical and the experimental results for simply supported beams, very few researches have addressed this problem in continuous PSC beams. This topic is, indeed, worthy of consideration bearing in mind that many relevant bridges and viaducts in the road and railway networks have been designed and constructed with this structural scheme. In this paper the attention is, thus, focused on the dynamic features of continuous PSC bridges taking into account the effect of prestressing. This latter, in fact, contributes to the modification of the distribution of the bending stress along the beam, also by means of the secondary moments, and influences the flexural stiffness of the beam itself. The dynamic properties of a continuous, two spans bridge connected by a nonlinear spring have been extracted by solving an eigenvalue problem in different linearized configurations corresponding to different values of the prestress force. The stiffness of the nonlinear spring has been calculated considering the mechanical behaviour of the PSC beam in the uncracked and in the cracked stage. The application of the proposed methodology to several case studies indicates that the shift from the uncracked to the cracked stage due to an excessive prestress loss is clearly detectable looking at the variation of the dynamic properties of the beam. In service conditions, this shift happens for low values of the prestress losses (up to 20%) for structure with a high value of the ratio between the permanent load and the total load, as happens for instance in long span, continuous box bridges. In such conditions, the detection of the dynamic properties can provide meaningful information regarding the structural state of the PSC beam.