• 제목/요약/키워드: pressurized water reactor

검색결과 481건 처리시간 0.077초

Investigation on reverse flow characteristics in U-tubes under two-phase natural circulation

  • Chu, Xi;Li, Mingrui;Chen, Wenzhen;Hao, Jianli
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.889-896
    • /
    • 2020
  • The vertically inverted U-tube steam generator (UTSG) is widely used in the pressurized water reactor (PWR). The reverse flow behavior generally exists in some U-tubes of a steam generator (SG) under both single- and two-phase natural circulations (NCs). The behavior increases the flow resistance in the primary loop and reduces the heat transfer in the SG. As a consequence, the NC ability as well as the inherent safety of nuclear reactors is faced with severe challenges. The theoretical models for calculating single- and two-phase flow pressure drops in U-tubes are developed and validated in this paper. The two-phase reverse flow characteristics in two types of SGs are investigated base on the theoretical models, and the effects of the U-tube height, bending radius, inlet steam quality and primary side pressure on the behavior are analyzed. The conclusions may provide some promising references for SG optimization to reduce the disadvantageous behavior. It is also of significance to improve the NC ability and ensure the PWR safety during some accidents.

Design and analysis of RIF scheme to improve the CFD efficiency of rod-type PWR core

  • Chen, Guangliang;Qian, Hao;Li, Lei;Yu, Yang;Zhang, Zhijian;Tian, Zhaofei;Li, Xiaochang
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3171-3181
    • /
    • 2021
  • This research serves to advance the development of engineering computational fluid dynamics (CFD) computing efficiency for the analysis of pressurized water reactor (PWR) core using rod-type fuel assemblies with mixing vanes (one kind of typical PWR core). In this research, a CFD scheme based on the reconstruction of the initial fine flow field (RIF CFD scheme) is proposed and analyzed. The RIF scheme is based on the quantitative regulation of flow velocities in the rod-type PWR core and the principle that the CFD computing efficiency can be improved greatly by a perfect initialization. In this paper, it is discovered that the RIF scheme can significantly improve the computing efficiency of the CFD computation for the rod-type PWR core. Furthermore, the RIF scheme also can reduce the computing resources needed for effective data storage of the large fluid domain in a rod-type PWR core. Moreover, a flow-ranking RIF CFD scheme is also designed based on the ranking of the flow rate, which enhances the utilization of the flow field with a closed flow rate to reconstruct the fine flow field. The flow-ranking RIF CFD scheme also proved to be very effective in improving the CFD efficiency for the rod-type PWR core.

Uncertainty quantification of PWR spent fuel due to nuclear data and modeling parameters

  • Ebiwonjumi, Bamidele;Kong, Chidong;Zhang, Peng;Cherezov, Alexey;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.715-731
    • /
    • 2021
  • Uncertainties are calculated for pressurized water reactor (PWR) spent nuclear fuel (SNF) characteristics. The deterministic code STREAM is currently being used as an SNF analysis tool to obtain isotopic inventory, radioactivity, decay heat, neutron and gamma source strengths. The SNF analysis capability of STREAM was recently validated. However, the uncertainty analysis is yet to be conducted. To estimate the uncertainty due to nuclear data, STREAM is used to perturb nuclear cross section (XS) and resonance integral (RI) libraries produced by NJOY99. The perturbation of XS and RI involves the stochastic sampling of ENDF/B-VII.1 covariance data. To estimate the uncertainty due to modeling parameters (fuel design and irradiation history), surrogate models are built based on polynomial chaos expansion (PCE) and variance-based sensitivity indices (i.e., Sobol' indices) are employed to perform global sensitivity analysis (GSA). The calculation results indicate that uncertainty of SNF due to modeling parameters are also very important and as a result can contribute significantly to the difference of uncertainties due to nuclear data and modeling parameters. In addition, the surrogate model offers a computationally efficient approach with significantly reduced computation time, to accurately evaluate uncertainties of SNF integral characteristics.

A Systems Engineering Approach for Uncertainty Analysis of a Station Blackout Scenario

  • de Sousa, J. Ricardo Tavares;Diab, Aya
    • 시스템엔지니어링학술지
    • /
    • 제15권1호
    • /
    • pp.51-59
    • /
    • 2019
  • After Fukushima Dai-ichi NPP accident, the need for implementation of diverse and flexible coping strategies (FLEX) became evident. However, to ensure the effectiveness of the safety strategy, it is essential to quantify the uncertainties associated with the station blackout (SBO) scenario as well as the operator actions. In this paper, a systems engineering approach for uncertainty analysis (UA) of a SBO scenario in advanced pressurized water reactor is performed. MARS-KS is used as a best estimate thermal-hydraulic code and is loosely-coupled with Dakota software which is employed to develop the uncertainty quantification framework. Furthermore, the systems engineering approach is adopted to identify the requirements, functions and physical architecture, and to develop the verification and validation plan. For the preliminary analysis, 13 uncertainty parameters are propagated through the model to evaluate the stability and convergence of the framework. The developed framework will ultimately be used to quantify the aleatory and epistemic uncertainties associated with an extended SBO accident scenario and assess the coping capability of APR1400 and the effectiveness of the implemented FLEX strategies.

Scaling analysis of the pressure suppression containment test facility for the small pressurized water reactor

  • Liu, Xinxing;Qi, Xiangjie;Zhang, Nan;Meng, Zhaoming;Sun, Zhongning
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.793-803
    • /
    • 2021
  • The small PWR has been paid more and more attention due to its diversity of application and flexibility in the site selection. However, the large core power density, the small containment space and the rapid accident progress characteristics make it difficult to control the containment pressure like the traditional PWR during the LOCA. The pressure suppression system has been used by the BWR since the early design, which is a suitable technique that can be applied to the small PWR. Since the configuration and operating conditions are different from the BWR, the pressure suppression system should be redesigned for the small PWR. Conducting the experiments on the scale down test facility is a good choice to reproduce the prototypical phenomena in the test facility, which is both economical and reasonable. A systematic scaling method referring to the H2TS method was proposed to determine the geometrical and thermohydraulic parameters of the pressure suppression containment response test facility for the small PWR conceptual design. The containment and the pressure suppression system related thermohydraulic phenomena were analyzed with top-down and bottom-up scaling methods. A set of the scaling criteria were obtained, through which the main parameters of the test facility can be determined.

Estimation of Input Material Accounting Uncertainty With Double-Stage Homogenization in Pyroprocessing

  • Lee, Chaehun;Kim, Bong Young;Won, Byung-Hee;Seo, Hee;Park, Se-Hwan
    • 방사성폐기물학회지
    • /
    • 제20권1호
    • /
    • pp.23-32
    • /
    • 2022
  • Pyroprocessing is a promising technology for managing spent nuclear fuel. The nuclear material accounting of feed material is a challenging issue in safeguarding pyroprocessing facilities. The input material in pyroprocessing is in a solid-state, unlike the solution state in an input accountability tank used in conventional wet-type reprocessing. To reduce the uncertainty of the input material accounting, a double-stage homogenization process is proposed in considering the process throughput, remote controllability, and remote maintenance of an engineering-scale pyroprocessing facility. This study tests two types of mixing equipment in the proposed double-stage homogenization process using surrogate materials. The expected heterogeneity and accounting uncertainty of Pu are calculated based on the surrogate test results. The heterogeneity of Pu was 0.584% obtained from Pressurized Water Reactor (PWR) spent fuel of 59 WGd/tU when the relative standard deviation of the mass ratio, tested from the surrogate powder, is 1%. The uncertainty of the Pu accounting can be lower than 1% when the uncertainty of the spent fuel mass charged into the first mixers is 2%, and the uncertainty of the first sampling mass is 5%.

Study on the effect of flow blockage due to rod deformation in QUENCH experiment

  • Gao, Pengcheng;Zhang, Bin;Shan, Jianqiang
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3154-3165
    • /
    • 2022
  • During a loss-of-coolant accident (LOCA) in the pressurized water reactor (PWR), there is a possibility that high temperature and internal pressure of the fuel rods lead to ballooning of the cladding, which causes a partial blockage of flow area in a subchannel. Such flow blockage would influence the core coolant flow, thus affecting the core heat transfer during a reflooding phase and subsequent severe accident. However, most of the system analysis codes simulate the accident process based on the assumed channel blockage ratio, resulting in the fact that the simulation results are not consistent with the actual situation. This paper integrates the developed core Fuel Rod Thermal-Mechanical Behavior analysis (FRTMB) module into the self-developed severe accident analysis code ISAA. At the same time, the existing flow blockage model is improved to make it possible to simulate the change of flow distribution due to fuel rod deformation. Finally, the ISAA-FRTMB is used to simulate the QUENCH-LOCA-0 experiment to verify the correctness and effectiveness of the improved flow blockage model, and then the effect of clad ballooning on core heat transfer and subsequent parts of core degradation is analyzed.

Analytical model of transverse pressure loss in a rod array

  • Ricciardi, Guillaume;Peybernes, Jean;Faucher, Vincent
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2714-2719
    • /
    • 2022
  • The present paper proposes some new computational methods and results in the framework of flow computation through congested domains seen as porous media, as it can be found in the core of a Pressurized Water Reactor (PWR). The flow is thus mostly governed by the distribution of pressure losses, both through the porous structures, such as fuel assemblies, and in the thin fluid layers between them. The purpose of the present paper is to consider the question of the interaction of a flow and a rod bundle from an analytical point of view gathering all the contributions through a set of equations as simple and representative as possible. It aims at demonstrating a sound understanding of the relevant phenomena governing the flow establishment in the geometry of interest instead of relying mainly on a posteriori observations obtained both experimentally and numerically. Comparison with two set of experimental results showed good agreement. The model proposed being analytical it appears easily implementable for studies needing an expression of fluid forces in a rod array as for fuel assembly bowing issue. It would be interesting to test the reliability of the model on other geometry with different P/R ratios.

Investigations on the Pu-to-244Cm ratio method for Pu accountancy in pyroprocessing

  • Sunil S. Chirayath;Heukjin Boo;Seung Min Woo
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3525-3534
    • /
    • 2023
  • Non-uniformity of Pu and Cm composition in used nuclear fuel was analyzed to determine its effect on Pu accountancy in pyroprocessing, while employing the Pu-to-244Cm ratio method. Burnup simulation of a typical pressurized water reactor fuel assembly, required for the analysis, was carried out using MCNP code. Used fuel nuclide composition, as a function of nine axial and two radial meshes, were evaluated. The axial variation of neutron flux and self-shielding effects were found to affect the uniformity of Pu and Cm compositions and in turn the Pu-to-244Cm ratio. However, the results of the study showed that these non-uniformities do not affect the use of Pu-to-244Cm ratio method for Pu accountancy, if the measurement samples are drawn from the voloxidized powder at the feed step of pyroprocessing. 'Material Unaccounted For' and its uncertainty estimates are also presented for a pyrprocessing facility to verify safeguards monitoring requirements of the IAEA.

정상운반조건 해석을 위한 사용후핵연료집합체 유한요소모델 최적화 (Optimization of Spent Nuclear Fuel Assembly Finite Element Model for Normal Transportation Condition Analysis)

  • 김민식;박민정;장윤석
    • 한국압력기기공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.163-170
    • /
    • 2023
  • Since spent nuclear fuel assemblies (SFA) are transported to interim storage or final disposal facility after cooling the decay heat, finite element analysis (FEA) with simplification is widely used to show their integrity against cladding failure to cause dispersal of radioactive material. However, there is a lack of research addressing the comprehensive impact of shape and element simplification on analysis results. In this study, for the optimization of a typical pressurized water reactor SFA, different types of finite element models were generated by changing number of fuel rods, fuel rod element type and assembly length. A series of FEA in use of these different models were conducted under a shock load data obtained from surrogate fuel assembly transportation test. Effects of number of fuel rods, element type and length of assembly were also analyzed, which shows that the element type of fuel rod mainly affected on cladding strain. Finally, an optimal finite element model was determined for other practical application in the future.