• Title/Summary/Keyword: pressure wave(압력파)

Search Result 296, Processing Time 0.034 seconds

Instability of Plunging Breaking Wave Impact on Inclined Cylinder (경사진 실린더에 작용하는 플런징 쇄파 충격력의 불안정성 고찰)

  • Hong, Key-Yong;Shin, Seung-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.4
    • /
    • pp.187-192
    • /
    • 2007
  • Impact on cylindrical surface caused by plunging breaking waves is investigated experimentally. The breaking waves are generated in a wave flume by decreasing the wave maker frequencies linearly and focusing the generated wave components at one specific location. The breaking wave packets are based on constant wave steepness spectrum. Three inclination angles of cylinder are applied to examine the effect of contact angle between cylinder and front surface of breaking waves. Also, the effect of cylinder diameter on pressure distribution and its peak value is investigated by adopting three cylinders with different diameters. The longitudinal location of cylinder is slightly moved in eight different points to find out a probable maximum value of impact pressure. The pressures and total force on cylinder surface are measured by piezo-electric pressure sensors and 3-components load cell with 30kHz sampling rate. The variation of peak impact pressures and forces is analyzed in terms of cylinder diameter, inclination angle and location. Also, the pressure distribution on cylindrical surface is examined. The cylinder location and surface position are more important parameters that govern the magnitude and shape of peak pressures, while the cylinder diameter and inclined angle are relatively insignificant. In a certain conditions, the impact phenomenon becomes very unstable which results in a large variation of measured valves in repeated runs.

  • PDF

Development of Bridge Circuit for Measuring Pressure Wave in Inkjet Head (잉크젯 압력파 측정을 위한 브리지 회로 개발)

  • Kwon, Kye-Si;Myung, Jae-Hwan;Joo, Young-Cheol;Lee, Sang-Wook;Kim, Kug-Weon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.342-347
    • /
    • 2008
  • Bridge circuit was developed such that the pressure wave in the inkjet can be measured. In order to test the circuit, the microfab single ejector was used. For the experiment, the head was filled with nano silver ink (20wt%). In order to generate waveform voltage for jetting signal, the Agilent 33120 was used in order to generate arbitrary waveform. For the driver, PZD 350 from TREK was used in order to amplify the waveform. Experimental results show that the designed circuit can effectively detect the pressure wave in the inkjet head.

Experimental Study on the Flow Hysteresis Phenomenon in a Supersonic Nozzle (초음속 노즐에서 발생하는 유동 이력현상에 대한 실험적 연구)

  • Nam, Jong-Soon;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.206-212
    • /
    • 2011
  • Hysteresis phenomena in fluid flow systems are frequently encountered in many industrial and engineering applications and mainly appear during the transient processes of change of the pressure ratio. Shock-containing flow field in supersonic nozzles is typically subject to such hysteresis phenomena, but associated flow physics is not yet understood well. In the present study, experimental work has been carried out to investigate supersonic nozzle flows during the transient processes of change in the nozzle pressure ratio. Time-dependent surface wall pressures were measured by a multiple of pressure transducers and the flow field was visualized using a nano-spark Schlieren optical method. The results obtained show that the hysteresis phenomenon is strongly dependent on the nozzle geometry as well as the time scale of the change of pressure ratio.

  • PDF

Experimental Investigation on Water Hammer Phenomenon in the Recirculation Line of a Liquid Rocket Engine (액체로켓엔진 재순환 유로에서의 수격현상에 관한 실험적 연구)

  • Kim, Bokyem;Hong, Moongeun;Lee, Jisung;Kim, Junghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.110-118
    • /
    • 2021
  • In a liquid rocket engine system, the flow of oxidizer into the combustion chamber is controlled by the main oxidizer shut-off valve. When the valve is closed, the oxidizer flows via the recirculation line, not into the combustion chamber. In this situation, the measured pressure could be much higher than a design value because of the water hammer phenomenon. In this paper, the experiments on the water hammer in the recirculation line with different initial conditions were conducted in order to study the pressure wave produced in each case. According to the experimental results, characteristics of the pressure wave in the recirculation line depend on the initial condition. To be specific, the pressure surge is maximized in case that the shock is condensation-oriented in the end of the recirculation line.

A Study on the Effect of Exhaust System Configuration on Scavenging Characteristic of a Four-Cylinder Turbocharged Diesel Engine (배기계 형상이 과급기를 장착한 4실린더 디젤엔진의 소기성능에 미치는 영향에 관한 연구)

  • Jeong, Soo-Jin;Chung, Jae-Woo;Kang, Woo;Kim, Woo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.35-43
    • /
    • 2006
  • A four-stroke four-cylinder turbocharged diesel engine can be fitted with various types exhaust system. In this paper, the impacts of exhaust system design on scavenging performance and wave action characteristic during valve overlap are investigated by using one-dimensional gas dynamic code. This work shows that a huge reflected exhaust pressure waves which reaches the exhaust port during valve overlap period is crucial design factor which determines quality and quantity of the fresh charge. Hence pressure wave that reaches the exhaust port of the cylinder during the valve overlap sequence should be weakened for good scavenging performance. This paper describes advantages and disadvantages of the various exhaust systems applied to a turbocharged and intercooled 4-cylinder diesel engine system in terms of scavenging efficiency and engine performance. To verify the computational results, experimental comparison has also performed.

An Experimental Study on Micro Shock Tube Flow (Micro Shock Tube 유동에 관한 실험적 연구)

  • Park, Jin-Ouk;Kim, Gyu-Wan;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.350-355
    • /
    • 2012
  • Past few years have seen the growing importance of micro shock tubes in various engineering applications. A pharma ballistic technique is one such application which uses micro shock tube to accelerate drug particles and penetrate into skin, thus avoiding the usual injection drug delivery system. But for the efficient design of such instruments requires the detailed knowledge of shock characteristics and flow field inside a micro shock tube. Due to many factors such as boundary layer, low Reynolds number and high Knudsen number shock propagation inside micro shock tubes will be quite different from that of the well established macro shock tubes. In the present study, experimental studies were carried out on a micro shock tube of 3 mm diameter to investigate flow characteristics and shock propagation. Pressure values were measured at different locations inside the driven section. From the experimental values other parameters like shock velocity, shock strength were found and shock wave diagram was constructed.

  • PDF

The Effect of the Variation of Pressure Ratio on the Characteristics of Lateral Forces in an Over-Expanded Nozzle (압력비 변화과정이 과팽창 노즐에서 발생하는 횡력 변동 특성에 미치는 영향)

  • Lee, Jong-Sung;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.38-44
    • /
    • 2010
  • The shock wave and boundary layer interaction patterns in an over-expanded rocket nozzle are associated with the production of undesirable side-forces during the start-up and shut-down processes of the engine. In the present work, a computational study is carried out to investigate the effect of the transient nozzle pressure ratio (NPR) on the flow fields inside the nozzle. The unsteady, compressible, axisymmetric, Navier-Stocks equations with SST k-${\omega}$ turbulence model are solved using a fully implicit finite volume scheme. NPR is varied from 2.0 to 10.0, in order to simulate the start-up and shut-down processes of the rocket engine. It is observed that the interaction patterns and the hysteresis phenomenon strongly depend on the time variation of NPR, leading to significantly different characteristics in the lateral forces.

Surface Elevation Recovery Methods from Pressure Gage for Irregular Waves (불규칙파(不規則波에) 대한 압력식(壓力式) 파고계(波高計)의 적용성(適用性)에 관한 연구(研究))

  • Kwon, Jung Gon;Kang, Ju Bok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.129-136
    • /
    • 1992
  • A precedure for recovering surface displacement from a time series of pressure measured by a pressure gage in a shallow water (that is, FFTM, LCM. IWM) is investigated with respect to a proper cut-off-frequency of a frequency response function for the accurate recovery of wave height and period. The authors examined the applicability of above mentioned three transformation procedures through field observations and laboratory experiments and the following results are obtained. i) The cut-off-frequency of the frequency response function used in FFTM is deeply depend on both the frequency response of the pressure sensor and the water depth at the sensor. In this study, a relatively accurate surface displacement can be recovered when the frequency response function is cut off at the frequency corresponding to kh=3.0 where k is a wave number at the depth of h. The frequency response function in the region higher than the cut-off-frequency is set constant to be the value at the cut-off-frequency. ii) The transformed surface displacements by LCM are affected by the small waves of short periods included in the measured pressure. It is found that pressure variation whose local frequency is higher than kh=1.5 has to be neglected to recover surface displacement sufficiently. iii) In IWM, the linear pressure response function is usually utilized by multiplying a coefficient N which is a function of the frequency (or kh) and takes a value around unity. However, in this study, a constant value of N(=1.0) gives a relatively accurate recovery of surface displacements.

  • PDF

A Study of the Influence of the Injection Location of Supersonic Sweeping Jet for the Control of Shock-Induced Separation (경사충격파 박리유동 제어를 위한 초음속 진동제트 분출위치의 영향성 연구)

  • Park, Sang-Hoon;Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.747-754
    • /
    • 2022
  • An experimental study was carried out to control a shock-induced boundary layer separation by utilizing the supersonic sweeping jet from the fluidic oscillator. High-speed schlieren, surface flow visualization, wall pressure measurement and precise Pitot tube measurement were applied to observe the influences of the location and the supply pressure of the fluidic oscillator on the characteristics of the oblique-shock-induced boundary layer separation. The characteristics of the separation control by the present supersonic fluidic oscillator was quantitatively analyzed by comparing with a conventional control method utilizing an air-jet vortex generator.

Numerical Analysis on the Compressible Flow Characteristics of Supersonic Jet Caused by High-Pressure Pipe Rupture Using CFD (CFD를 이용한 고압파이프 파단 시 초음속제트의 압축성유동 특성에 관한 수치해석)

  • Jung, Jong-Kil;Kim, Kwang-Chu;Yoon, Jun-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.649-657
    • /
    • 2017
  • A rupture in a high-pressure pipe causes the fluid in the pipe to be discharged in the atmosphere at a high speed resulting in a supersonic jet that generates the compressible flow. This supersonic jet may display complicated and unsteady behavior in general. In this study, Computational Fluid Dynamics (CFD) analysis was performed to investigate the compressible flow generated by a supersonic jet ejected from a high-pressure pipe. A Shear Stress Transport (SST) turbulence model was selected to analyze the unsteady nature of the flow, which depends upon the various gases as well as the diameter of the pipe. In the CFD analysis, the basic boundary conditions were assumed to be as follows: pipe of diameter 10 cm, jet pressure ratio of 5, and an inlet gas temperature of 300 K. During the analysis, the behavior of the shockwave generated by a supersonic jet was observed and it was found that the blast wave was generated indirectly. The pressure wave characteristics of hydrogen gas, which possesses the smallest molecular mass, showed the shortest distance to the safety zone. There were no significant difference observed for nitrogen gas, air, and oxygen gas, which have similar molecular mass. In addition, an increase in the diameter of the pipe resulted in the ejected impact caused by the increased flow rate to become larger and the zone of jet influence to extend further.