• Title/Summary/Keyword: pressure vessel

Search Result 1,354, Processing Time 0.037 seconds

Evaluation of Detectable Defect Size for Inner Defect of Pressure Vessel Using Laser Speckle Shearing Interferometry (레이저 스페클 전단간섭법을 이용한 압력용기 내부결함의 측정 가능한 결함 크기의 평가)

  • Kim, Kyeong-Suk;Seon, Sang-Woo;Choi, Tae-Ho;Kang, Chan-Geun;Na, Man-Gyun;Jung, Hyun-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.135-140
    • /
    • 2014
  • Pressure vessels are used in various industrial fields. If a defect occurs on the inner or outer surface of a pressure vessel, it may cause a massive accident. A defect on the outer surface can be detected by visual inspection. However, a defect on the inner surface is generally impossible to detect with visual inspection. Nondestructive testing can be used to detect this type of defect. Laser speckle shearing interferometry is one nondestructive testing method that can optically detect a defect; its advantages include noncontact, full field, and real time inspection. This study evaluated the detectable size for an internal defect of a pressure vessel. The material of the pressure vessel was ASTM A53 Gr.B. The internal defect was detected when the pressure vessel was loaded by internal pressure controlled by a pneumatic system. The internal pressure was controlled from 0.2 MPa to 0.6 MPa in increments of 0.2 MPa. The results confirmed that an internal defect with a 25 % defect depth could be detected even at 0.2 MPa pressure variation.

Crack analysis of mis-matched welding at CRDM(control rod drive mechanism) upper penetration nozzles of RPV(reactor pressure vessel) considering the change of mechanical properties (기계적 물성 변이를 고려한 원자로 압력용기(RPV : reactor pressure vessel) 상부 제어봉 구동 장치(CRDM : control of rod diver mechanism) 관통 노즐 이종재 용접부의 균열해석)

  • Lee, Yong-U;Kim, Jong-Seong;Lee, Gang-Yong
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.241-243
    • /
    • 2005
  • PDF