• 제목/요약/키워드: pressure tunnel

검색결과 1,410건 처리시간 0.036초

협소터널 고속 주행시 압력변동 및 미기압파 저감을 위한 수치해석적 연구 (Numerical Study of Reduction of Pressure variation and Micro-Pressure Wave for high-speed train in narrow tunnel)

  • 이정욱;윤수환;곽민호;이동호;권혁빈;고태환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.70-77
    • /
    • 2011
  • When a train passes a conventional tunnel at high speed, an environmental noise issue arises by pressure variation and micro-pressure waves at the exit of the tunnel. It is known that this issue can be reduced by using dummy tunnel duct on the tunnel entrance. We studied the variances of micro-pressure waves at the exit of tunnel and pressure variation within the tunnel, by altering surface area and length of the dummy tunnel duct. For analyze this train-tunnel relation problem, axi-simmetric steady compressible flow solver was used. Changing the length of the dummy tunnel duct can adjust pressure variation, changing the surface area of the dummy tunnel duct can adjust volume and pressure variation of the micro-pressure wave. Thus, optimized surface area and length of the dummy tunnel duct can simultaneously reduce environmental noise pollution by micro-pressure wave and issues by the pressure variation.

  • PDF

고속철도의 터널입구 형상변황에 따른 압력파동 현상에 관한 수치적 연구 (Numerical Study on the Effects of Pressure Wave Propagation for Tunnel Entrance Shape Change in High-Speed Railways)

  • 목재균;백남욱;유재석;최윤호
    • 한국자동차공학회논문집
    • /
    • 제5권2호
    • /
    • pp.50-59
    • /
    • 1997
  • When a front head of train enters a tunnel at a high speed, compression wave is generated at tunnel entrance due to the confinement effect and propagated along the tunnel with sound of speed. The propagated compression wave is reflected at tunnel exit due to abrupt pressure change at passage. The reflected wave is expansion pressure wave. And when the rear head of train goes through the tunnel entrance, another expansion pressure wave is generated and propagated along the tunnel. The pressure drop occurs seriously around train when the two expansion pressure waves come cross on train in the tunnel. In order to reduce the pressure drop, the compression wave front must be controlled because the intensity and magnitude of pressure drop is nearly proportional to that of compression wave at tunnel entrance. This study relates to reduction of the pressure wave gradient with respect to tunnel entrance shape change with various kind of angle and rounding. The results show characteristics of wave propagation in tunnel, usefulness of characteristic curve to estimate proper time domain size in numerical study and measuring time in actual experiment. Also rounding is contributed to improve pressure wave front even if its radius is very small at tunnel entrance. In order to improve of pressure wave front at tunnel entrance, proper angle is prefered to rounding with big radius and an angle of around 14$^{\circ}$ is recommended according to this simulations, And it is expected to reduce additional pressure drop in tunnel when the location and the size of the internal space for attendant equipment are considered in advance.

  • PDF

기존선 터널 출구 미기압파 저감을 위한 터널 후드의 수치 해석적 연구 (Numerical Study of Tunnel Hood to Reduce Micro-Pressure Wave on Conventional Railways)

  • 김병열;권혁빈;윤수환;구요천;고태환;이동호
    • 한국철도학회논문집
    • /
    • 제8권6호
    • /
    • pp.513-519
    • /
    • 2005
  • The Korean Tilting Train eXpress may produced a strong micro-pressure wave in tunnel exit because of large train/tunnel area ration of conventional railways. This micro-pressure wave causes an impulsive noise which is a serious environmental noise pollution near tunnel exit. Tunnel hood can be the method of reducing the micro-pressure wave in tunnel exit. Therefore, parametric studies for tunnel hood are performed with respect to the hood length and size to investigate the effects of the tunnel hood. Also, axi-symmetric unsteady compressible flow solver was used to analyze train-tunnel relative motion. According to the result of numerical analysis, the maximum micro-pressure wave in tunnel exit is reduced by 56% throughout the hood establishment on conventional railways.

수압을 고려한 터널 라이닝의 응답 해석 (Response analysis of tunnel lining considering pore pressure)

  • 김기태;김영재;박두희
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.541-544
    • /
    • 2008
  • Generally numerical analysis of tunnel lining, under dynamic loading condition, performed not considering pore pressure. But if tunnel excavated under the surface of water, such as bottom of the sea, the river bed, tunnel lining can take pore water pressure. It may be different from evaluated numerical analysis not considering pore pressure. Therefore tunnel design should consider effect of water pressure acting on tunnel lining.

  • PDF

터널에서의 고속철도 압력파에 관한 X-t선도 이론 해석 (Theoretical x-t Diagram Analysis on Pressure Waves of High Speed Train in Tunnel)

  • 남성원;권혁빈
    • 한국철도학회논문집
    • /
    • 제7권3호
    • /
    • pp.200-207
    • /
    • 2004
  • Theoretical study has been conducted to clarify pressure characteristics of KTX (Korea Train eXpress) in tunnel. The severe pressure change in tunnel may give rise to the ear-discomfort for passenger and fatigue for car body. Critical tunnel lengths which are induced by x-t diagram analysis can be applied to the experimental results measured by using the running test with atmospheric pressure sensors and portable data acquisition system in previous study. In this study, the tunnels from 200m to 4000m in length have been chosen for the investigation of tunnel length effects. We found that there are similar patterns of external pressure change for each critical tunnel length. The critical tunnel lengths are governed by train speed, train length and sonic velocity. And, the patterns of pressure wave in tunnel are classified into eight groups.

고속전철의 기밀 거동 해석 (Analysis of the air tightness for high speed train)

  • 정병철;염경안;강석택
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.220-224
    • /
    • 2002
  • As the train run through the tunnels, especially at high speed, pressure shock developed by the running train gives the influence on the pressure fluctuation inside the tunnel and consequently, inside the car. This pressure changes and pressure gradient is closely related with the tunnel section, train speed, air tightness of the train, length of the tunnel, etc. This study includes the analysis of the pressure behavior at the varied train speed and tunnel length. The results show that train speed affects the pressure gradient inside the car almost linearly, and that there exist the critical tunnel lengths that gives the maximum value of pressure change and pressure gradient, respectively.

  • PDF

터널통과시 고속 철도 압력 변동 특성에 관한 이론적 연구 (Theoretical Study on the Characteristics of Pressure Change of High Speed Train in Tunnels)

  • 남성원;권혁빈
    • 대한기계학회논문집B
    • /
    • 제28권9호
    • /
    • pp.1042-1050
    • /
    • 2004
  • Theoretical study has been conducted to clarify pressure characteristics of KTX(Korea Train eXpress) in tunnel. The severe pressure change in tunnel may give rise to the ear-discomfort for passenger and fatigue for car body. The external and internal pressure of rolling stock have been measured by using the running test with atmospheric pressure sensors and portable data acquisition system in high speed train. In this study, the tunnels from 200m to 4000m in length have been chosen for the investigation of tunnel length effects. We found that there are similar patterns of external pressure change for each critical tunnel length. The critical tunnel lengths are governed by train speed, train length and sonic velocity. And, the patterns of pressure wave in tunnel are classified into eight groups.

미고결 저토피 터널에 작용하는 토압에 관한 연구 (Tunnel Pressure acting on Shallow Tunnel in Unconsolidated Ground)

  • 이재호;아쿠타가와 신니치;김영수;문홍득
    • 터널과지하공간
    • /
    • 제17권6호
    • /
    • pp.453-463
    • /
    • 2007
  • Terzaghi터널토압 이론은 shield 및 도심 NATM터널의 설계토압으로 현재까지도 사용되고 있다. 본 논문에서 지반의 변형거동과 한계상태를 가정한 Terzaghi 토압과의 상호 관계에 관한 조사를 위해 Terzaghi 터널토압이론, 2차원 실내 터널 모형 실험과 변형률 연화모델을 기본으로한 비선형 수치해석을 실시하였다. 굴착에 따른 터널 토압와 지반 변형거동의 폭넓은 이해와 그들의 상호작용에 대한 효율적인 활용은 경제적인 터널 지보설계와 안정한 시공을 이끌 수 있다.

침투력이 터널 막장의 안정성에 미치는 영향 연구 - 모형실험을 중심으로 - (Effect of Seepage Forces on the Tunnel Face Stability - Assessing through Model Tests -)

  • 이인모;안재훈;남석우
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.41-48
    • /
    • 2001
  • In this study, two factors are simultaneously considered for assessing tunnel face stability: one is the effective stress acting on the tunnel face calculated by upper bound solution; and the other is the seepage force calculated by numerical analysis under the condition of steady-state groundwater flow. The seepage forces calculated by numerical analysis are compared with the results of a model test. From the results of derivations of the upper bound solution with the consideration of seepage forces acting on the tunnel face, it could be found that the minimum support pressure for the face stability is equal to the sum of effective support pressure and seepage pressure acting on the tunnel face. Also it could be found that the average seepage pressure acting on the tunnel face is proportional to the hydrostatic pressure at the same elevation and the magnitude is about 22% of the hydrostatic pressure for the drainage type tunnel and about 28% for the water-proof type tunnel. The model tests performed with a tunnel model had a similar trend with the seepage pressure calculated by numerical analysis. From the model tests it could be also found that the collapse at the tunnel face occurs suddenly and leads to unlimited displacement.

  • PDF

터널내를 주행하는 열차의 공기역학적 해석(II)-2열차의 공기역학- (Aerodynamic Analysis of a Train Running in a Tunnel(II)-Aerodynamics of Two-Trains-)

  • 김희동
    • 대한기계학회논문집B
    • /
    • 제21권8호
    • /
    • pp.983-995
    • /
    • 1997
  • As a high-speed train enters a tunnel, a compression wave is generated ahead of it due to the piston action of train. The compression waves propagate along the tunnel and reflect backward at the exit of tunnel. A complex wave phenomenon appears in the tunnel, because of the successive reflections of the pressure waves at the exit and entrance of tunnel. The pressure waves can give rise to large pressure transients which impose the fluctuating loads on the running train. It is highly needed that the pressure transients should be predicted to design the train body and to improve the comfort for the passengers in the train. In the present study, the pressure transients and aerodynamic drag for two-trains running in a tunnel were calculated numerically for a wide range of train speed, and compared with the results of the previous tunnel tests and calculations for one train. The present calculation results agreed with ones of the tunnel tests, and the mechanism of pressure transients was made clear.