• 제목/요약/키워드: pressure tubes

검색결과 650건 처리시간 0.022초

Burst pressure estimation of Alloy 690 axial cracked steam generator U-bend tubes using finite element damage analysis

  • Kim, Ji-Seok;Kim, Yun-Jae;Lee, Myeong-Woo;Jeon, Jun-Young;Kim, Jong-Sung
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.666-676
    • /
    • 2021
  • This paper presents numerical estimation of burst pressures of axial cracked U-bend tubes, considering the U-bending process analysis. The validity of the FE simulations is confirmed by comparing with published experimental data. From parametric analyses, it is shown that existing EPRI burst pressure estimation equations for straight tubes can be conservatively used to estimate burst pressures of the U-bend tubes. This is due to the increase in yield strength during the U-bending process. The degree of conservatism would decrease with increasing the bend radius and with increasing the crack depth.

열전달 촉진관에서 대체냉매의 비등열전달계수 (Pool boiling heat transfer coefficients of alternative refrigerants in enhanced tubes)

  • 이준강;고영환;정동수;송길홍;김종보
    • 대한기계학회논문집B
    • /
    • 제22권7호
    • /
    • pp.980-991
    • /
    • 1998
  • In this study, nucleate pool boiling heat transfer coefficients of alternative refrigerants on a plain, low fin, and two enhanced tubes were measured and compared against each other. To obtain data at conditions similar to the actual evaporator, a fluid heating method was employed instead of an electric heating method in the experiments. R123, R134a, R22 and R410a were used as working fluids and data were taken at 7 deg.C ar heat fluxes of 20 ~ 100 kW/m$\^$2/. Comparison of the plain tube data against some correlations showed that the simplest correlation of Cooper based on reduced pressure predicted the data for all fluids tested with a 10% deviation. For all refrigerants, enhanced tubes composed of subsurface and subtunnels, especially Thermoexcel-E tube, showed the highest heat transfer coefficients among the tubes tested with one exception that the low fin tube's performance was better than those of enhanced tubes for high vapor pressure fluid such as R410a at high heat flux. Finally, a low fin and enhanced tubes showed higher heat transfer enhancement for low vapor pressure of R123 than for high vapor pressure fluisd. For R123, the enhancement factors for Turbo-B and Thermoexcel-E tubes were 2.8 ~ 4.8 and 4.6 ~ 8.1 respectively.

Numerical prediction of transient hydraulic loads acting on PWR steam generator tubes and supports during blowdown following a feedwater line break

  • Jo, Jong Chull;Jeong, Jae Jun;Yun, Byong Jo;Kim, Jongkap
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.322-336
    • /
    • 2021
  • This paper presents a numerical prediction of the transient hydraulic loads acting on the tubes and external supports of a pressurized water reactor (PWR) steam generator (SG) during blowdown following a sudden feedwater line break (FWLB). A simplified SG model was used to easily demonstrate the prediction. The blowdown discharge flow was treated as a flashing flow to realistically simulate the transient flow fields inside the SG and the connected broken feedwater pipe. The effects of the SG initial pressure or the broken feedwater pipe length on the intensities or magnitudes of transient hydraulic loads were investigated. Then predictions of the decompression pressure wave-induced impulsive pressure differential loads on SG tubes and the transient blowdown loads on SG external supports were demonstrated and the general aspects of transient responses of such transient hydraulic loads to the FWLB were discussed.

마이크로핀관내에서 R-22와 R-4O7C의 응축압력강하 특성에 관한 실험적 연구 (Experimental study for the pressure drop of R-22 and R-4O7C during the condensation in the micro-fin tubes)

  • 노건상
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.715-722
    • /
    • 2007
  • Experiments were conducted for the investigation of pressure drop inside horizontal micro-fin tubes during the condensation of R-22 and ternary refrigerant. R-407C(HFC-32/125/134a 23/25/62 wt%) as a substitute of R-22. The condenser is a double-tube and counterflow type heat exchanger which is consisted with micro-fin tubes having 60 fins with a length of 4000mm, outer diameter of 9.53mm and fin height of 0.2mm. The mass velocity varied from 102.1 to $301.0kg/(m^2{\cdot}s)$ and inlet quality was fixed as 1.0. From the experimental results. the pressure drop for R-407C was considerably higher than that for R-22. The value of PF(penalty factor) for both of refrigerants was not bigger than the ratio of micro-fin tube area to smooth tube area. Based on the experimental data. correlation was Proposed for the prediction of frictional pressure drop during the condensation of R-22 and R-407C inside horizontal micro-fin tubes.

A collapse Stress Analysis of a Heat Exchanger Subjected to External Pressure in a Nuclear Power Plant

  • Kwon, Jae-Do;Lee, Choon-Yeol;Woo, Seung-Wan
    • Journal of Mechanical Science and Technology
    • /
    • 제14권11호
    • /
    • pp.1216-1224
    • /
    • 2000
  • The collapse pressure of tubes is determined experimentally by Tschoepe and Maison for various materials with different geometries. The results are compared with those obtained by ASME Codes UG-31 and UG-28. A collage pressure is the pressure required for the incipient yielding stress of the tubes with and without ovality. This collapse pressure is compared with the experimental results by Tschoepe and Maison. The present investigation is towards finding the collapse pressure required to bring the entire wall of tubes into a state of plastic flow for the pipes, with ovality and without ovality. This collapse pressure is compared with the collapse pressure obtained through experiments in the present investigation. The experimental results are compared with the pressure obtained by FEM(finite element methods). The FEM results are then compared with results obtained through an approximate plastic analysis of the strain hardening material, SA312-TP304 stainless steel. The structural integrity evaluation is performed for the heat exchanger used in an actual nuclear power plant by using various methods described in this paper. The results obtained by the various analyses and the FEM are discussed. consequently, the paper is oriented towards an actual design purpose of d heat exchanger in an industrial environment, rather than for the purpose of an academic research project investigation.

  • PDF

CANDU형 원전 압력관에 존재하는 축방향 균열의 응력확대계수 (Stress Intensity Factors for Axial Cracks in CANDU Reactor Pressure Tubes)

  • 이국희;오영진;박흥배;정한섭;정하주;김윤재
    • 한국압력기기공학회 논문집
    • /
    • 제7권1호
    • /
    • pp.17-26
    • /
    • 2011
  • CANDU reactor core is composed a few hundreds pressure tubes, which support and locate the nuclear fuels in the reactor. Each pressure tube provides pressure boundary and flow path of primary heat transport system in the core region. In order to guarantee the structural integrity of pressure tube flaws which can be found by in-service inspection, crack growth and fracture initiation assessment have to be performed. Stress intensity factors are important and basic information for structural integrity assessment of planar and laminar flaws (e. g. crack). This paper reviews and confirms the stress intensity factor of axial crack, proposed in CSA N285.8-05, which is an fitness-for-service evaluation code for pressure tubes in CANDU nuclear reactors. The stress intensity factors in CSA N285.8-05 were compared with stress intensity factors calculated by three methods (finite element results, API 579-1/ASME FFS-1 2007 Fitness-For-Service and ASME Boiler and Pressure Vessel Code Section XI). The effects of Poisson's ratio and anisotropic elastic modulus on stress intensity factors were also discussed.

내압을 받는 튜브 리듀싱에 관한 연구 (Study on the Tube Reducing Process Subject to Internal Pressure)

  • 이항수;양동열
    • 한국정밀공학회지
    • /
    • 제4권4호
    • /
    • pp.72-83
    • /
    • 1987
  • In axisymmetric tube reducing process for thin sheet metal tubes, the reduction ration of diameter is an important factor in the process design. For very thin sheet metal tubes, tube reducing cannot be successfully employed due to wrinkling of the edge portion of a tube as well as due to buckling of its rest portion. In the present study, thin sheet metal tubes are subjected to internal pressure during the tube reducing process in order to increase the forming limits. Analysis is made for the sound flow deformation in nonsteady tube reducing considering the normal anisotropy. Experiments are carried out for brass tubes. The present study is shown to give an effective guide line in designing the tube reducing process for very thin-walled sheet metal tubes. Hpwever, it is suggested that an analysis for instability should be made to design the process more effectively.

  • PDF

열전달 촉진관에서 탄화수소계 냉매의 풀비등 열전달계수 (Pool Boiling Heat Transfer Coefficients of Hydrocarbon Refrigerants on Various Enhanced Tubes)

  • 박기정;정동수
    • 설비공학논문집
    • /
    • 제18권12호
    • /
    • pp.1017-1024
    • /
    • 2006
  • In this work, pool boiling heat transfer coefficients (HTCs) of five hydrocarbon refrigerants of propylene, propane, isobutane, butane and dimethylether (DME) were measured at the liquid temperature of $7^{\circ}C$ on a 26 fpi low fin tube, Turbo-B, and Thermoexcel-E tubes. All data were taken from 80 to $10kW/m^2$ in the decreasing order of heat flux. The data of hydrocarbon refrigerants showed a typical trend that nucleate boiling HTCs obtained on enhanced tubes also increase with the vapor pressure. Fluids with lower reduced pressure such as DME, isobutane, and butane took more advantage of the heat transfer enhancement mechanism of enhanced tubes than those enhancement ratios of $2.3\sim9.4$ among the tubes tested due to its sub-channels and re-entrant cavities.

협착이 발생된 분기관내 비뉴턴유체의 유동특성 연구 (Flow Characteristics of Non-Newtonian Fluids in the Stenosed Branch Tubes)

  • 서상호;유상신;노형운
    • 설비공학논문집
    • /
    • 제8권3호
    • /
    • pp.307-316
    • /
    • 1996
  • The objective of present study is to obtain information on the stenosis effects in the branch tubes for industrial piping system and atherogenesis processing in human arteries. Numerical solutions for flows of Newtonian and non-Newtonian fluids in the branch tubes are obtained by the finite volume method. Centerline velocity and pressure along the bifurcated tubes for water, blood and aqueous Separan AP-273 solution are computed and the numerical results of blood and the Separan solution are compared with those of water. Flow phenomena in the stenosed branch tubes are discussed extensively and predicted effectively. The effects of stenosis on the pressure loss coefficients are determined.

  • PDF

곡관과 연속된 경사관 내에서 유동하는 아이스슬러리의 압력손실에 미치는 유속의 영향 (Influence of Velocity on Pressure Drop of Flowing Ice Slurry in Elbow and its continued Inclined Tube)

  • 박기원;김규목
    • 설비공학논문집
    • /
    • 제17권7호
    • /
    • pp.635-641
    • /
    • 2005
  • This study experimented to understand the effects of transporting ice slurry through elbow and inclined tube. And at this experiment it used propylene glycol-water solution and a diameter of about 2mm ice particle. The experiments were carried out under various conditions, with velocity of water solution at the entry ranging from 1.0 to 3.5 w/s and elbows and inclined tubes of 4 kinds angle with $30^{\circ},\;45^{\circ},\;90^{\circ}\;and\;180^{\circ}$. The pressure drop between the tube entry and exit were measured. According to angle of bending, the highest pressure drop was measured at $30^{\circ}$ elbow and the lowest pressure drop was measured at $90^{\circ}$ elbow, and there are only a little differences of pressure drop between $45^{\circ}$ elbow and $180^{\circ}$ elbow. According to angle of inclined tube, the highest pressure drop was measured at $90^{\circ}$ inclined tube and the pressure drop at $45^{\circ},\;30^{\circ},\;180^{\circ}$ inclined tubes were lower successively. The lowest pressure drop in elbows and inclined tubes was measured at velocity of $2.0\~2.5$ m/s and concentration of $10\;wt\%$.