• Title/Summary/Keyword: pressure tube

Search Result 2,124, Processing Time 0.029 seconds

An Experimental Study on Heat Transfer and Pressure Drop Characteristics during Supercritical Process of Carbon Dioxide in a Horizontal Tube (수평관 내에서 이산화탄소 초임계 가스냉각 과정의 열전달 및 압력강하 특성에 관한 실험적 연구)

  • 최이철;강병하;김석현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.414-420
    • /
    • 2004
  • The heat transfer and pressure drop characteristics associated with the gas cooling of the supercritical carbon dioxide in a horizontal tube have been investigated experimentally. This problem is of particular interest in the design of a gas cooler of cooling systems using $CO_2$refrigerant. The test section is consisted of 6 series of 455 mm in length, 4.15 mm ID copper tube, respectively. The effects of the inlet temperature, pressure and mass flow rate on the heat transfer and pressure drop of $CO_2$in a horizontal tube is studied in detail. The heat transfer coefficient of $CO_2$is varied by temperature, inlet pressure, and mass flow rate of $CO_2$. This has maximum value at near the pseudocritical temperature. The pressure drop is changed by inlet pressure and mass flow rate of $CO_2$. The results have been compared with those of previous work. The heat transfer correlation at the supercritical gas cooling process is also suggested.

Study on the Injection Characteristics using Injection Rate in a Direct-injection Gasoline Injector with Multi-hole (분사율을 이용한 직접 분사식 다공 가솔린 인젝터의 분사특성 연구)

  • Park, Jeonghyun;Shin, Dalho;Park, Su Han
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.20-28
    • /
    • 2016
  • This paper presents an experimental study on the GDI injector with Bosch method. The injection characteristics, such as the injection quantity, the injection rate, the maximum velocity of the nozzle exit and the injection delay were studied through the change of the injection pressure, the tube pressure and energizing duration in injection rate measurement device using nheptane. The injection quantity is increased by increasing injection pressure, decreasing tube pressure or increasing energizing duration. As the difference of the injection quantity changed, the shape of injection rate was moved with a constant form. The maximum velocity of the nozzle exit showed a tendency to increase as the injection pressure is increased. However, tube pressure did not affect. Overall, it was confirmed that the closing delay is longer than the opening delay in all conditions. As the injection pressure increased, the result has a tendency to decrease the closing delay, it did not affect the opening delay. Reduction of the closing delay showed the reduction of the injection duration. the tube pressure and energizing duration did not affect the injection delay (opening delay, closing delay).

Evaporation Pressure Drop of Carbon Dioxide in a Horizontal Tube (수평관내 이산화탄소의 증발 압력강하)

  • Ku, H.K.;Son, C.H.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.63-69
    • /
    • 2007
  • The evaporation pressure drop of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and an evaporator (test section). The test section consists of a smooth, horizontal stainless steel tube of 4.57 mm inner diameter. The experiments were conducted at saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$, and heat flux of 10 to $40kW/m^2$. The test results showed that the evaporation pressure drop of $CO_2$ are highly dependent on the vapor quality, heat flux and saturation temperature. The measured pressure drop during the evaporation process of $CO_2$ increases with increased mass flux, and decreased saturation temperature. The evaporation pressure drop of $CO_2$ is much lower than that of R 22. In comparison with test results and existing correlations, the best fit of the present experimental data is obtained with the previous correlation. But existing correlations failed to predict the evaporation pressure drop of $CO_2$. Therefore, it is necessary to develop reliable and accurate predictions determining the evaporation pressure drop of $CO_2$ in a horizontal tube.

  • PDF

A Study on the Welding Pressure of Billets in the Extru-Bending Process of Hollow Tube (중공튜브의 압출굽힘가공에 있어서 소재결합력에 관한 연구)

  • 김민규;진인태
    • Transactions of Materials Processing
    • /
    • v.11 no.6
    • /
    • pp.495-502
    • /
    • 2002
  • The welding pressure in extru bending process is affected by the shape of welding chamber of porthole die. It is very important to increase the welding pressure when the tube should be extruded particulary from four billets of the materials. The high circumferential stress of the tube can make the welding pressure increase during the extru-bending. In order to increase the circumferential stress, it is necessary to make the billets pass through the narrow gap between the conical die and the conical plug. This paper describes the welding pressure by the experiments and the analysis with the two types of the chamber. One of them is the chamber between the flat die and straight mandrel, and the other one is the chamber between the conical die and conical plug. The results of the experiments and the analysis shows that the conical chamber makes the welding pressure increase by the effect of the reducing diameter of tube and the welding pressure by the conical dic and plug is stronger than the welding pressure by the flat die and straight mandrel.

Evaluation of Condensation Pressure Drop Correlations for Microfin Tubes

  • Han, Dong-Hyouck;Lee, Kyu-Jung
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.4
    • /
    • pp.169-174
    • /
    • 2007
  • The characteristics of nine existing condensation frictional pressure drop correlations for microfin tubes were evaluated with geometries, vapor quality, mass flux, and refrigerants. The $M\ddot{u}ller-Steinhagen$ and Heck [17] smooth tube frictional pressure drop correlation was utilized to evaluate the pressure drop penalty factor (PF). Except the Nozu et al. [2], the Kedzierski and Goncalves [3], the Choi et al. [10], and the Cavallini et al. [7], other pressure drop correlations did not consider the effect of tube geometry. The prediction values for R407C by pressure drop correlations show discrepancy with previous researcher's experimental trend. Additional efforts on the development of reliable condensation pressure drop correlation for microfin tubes are still required with the systematic investigation of various effects like geometries and working conditions.

Experimental investigation on the high frequency flow-induced vibration and pressure drop of cylindrical tube bundle with plate type supporting structures (플레이트형 지지구조체로 지지된 실린더형 관 군의 고주파 유동유발진동 및 압력손실에 대한 실험적 고찰)

  • Lee, Kang-Hee;Kim, Hyung-Kyu;Yoon, Kyung-Ho;Eom, Kyong-Bo;Kim, Jin-Sun;Suh, Jung-Min
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1367-1372
    • /
    • 2008
  • A plate type supporting structure of a tube bundle in axial flow generates a certain band of a high frequency periodic excitation of a vortex shedding and/or a flow separation due to sharp edge of the plate thickness and a severe pressure drop due to a cross-sectional area of the supports. With a design consideration of the low vibration and a small flow resistance, the analysis method is uniquely confined to an experimental approach because a complex geometry of a cylindrical tube bundle and/or physical phenomena related to the fluid-structure interaction of tube bundle in a flow impede a theoretical or a numerical approach. A 5x5 cylindrical tube bundle with 5 supports which were discretely located along the bundle's axis was tested in the FIVPET hydraulic test loop for a design evaluation and an analysis perspectives. A high frequency flow-induced vibration of the supporting structures of the cylindrical tube bundle was measured at a outer surface of a supporting structure through a transparent flow housing by the laser dopper vibrometer. Pressure drop in-between three measurement distances was measured by the differential pressure transmitter. High frequency vibration and pressure drop fairly depends on the geometric design of supporting structure. So, these two parameters would be used as a qualitative design variables for design evaluation and analysis.

  • PDF

An Experimental Study for the Performance Test of a Ballistic Range Simulator (Ballistic Range Simulator의 성능평가를 위한 실험적 연구)

  • Kang, Hyun-Goo;Rajesh, G.;Lee, Jung-Min;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.367-370
    • /
    • 2006
  • The ballistic range has long been employed in a variety of engineering fields such as high-velocity impact engineering, projectile aerodynamics, creation of new materials, etc, since it can create an extremely high-pressure state in very short time. Two-stage light gas gun is being employed most extensively. The present experimental study has been conducted to develop a new type of ballistic range which can easily perform a projectile simulation. The ballistic range consists of a high-pressure tube, piston, pump tube, shock tube and launch tube. The experiment is conducted to find out the dependence of various parameters on the projectile velocity. The pressure in high-pressure tube, pressure of diaphragm rupture and projectile mass are varied to obtain various projectile velocities. This study also addresses the effect of the presence of a shock tube located between the pump tube and launch tube on system study. The experimental results are compared with those obtained through an author's theoretical study.

  • PDF

MEASUREMENT OF THE SINGLE AND TWO PHASE FLOW USING A NEWLY DEVELOPED AVERAGE BIDIRECTIONAL FLOW TUBE

  • Yun, Byong-Jo;Euh, Dong-Jin;Kang, Kyunc-Ho;Song, Chul-Hwa;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.595-604
    • /
    • 2005
  • A new instrument, an average BDFT (Birectional Flow Tube), was proposed to measure the flow rate in single and two phase flows. Its working principle is similar to that of the Pilot tube, wherein the dynamic pressure is measured. In an average BDFT, the pressure measured at the front of the flow tube is equal to the total pressure, while that measured at the rear tube is slightly less than the static pressure of the flow field due to the suction effect downstream. The proposed instrument was tested in air/water vertical and horizontal test sections with an inner diameter of 0.08m. The tests were performed primarily in single phase water and air flow conditions to obtain the amplification factor(k) of the flow tube in the vertical and horizontal test sections. Tests were also performed in air/water vertical two phase flow conditions in which the flow regimes were bubbly, slug, and churn turbulent flows. In order to calculate the phasic mass flow rates from the measured differential pressure, the Chexal drift-flux correlation and a momentum exchange factor between the two phases were introduced. The test results show that the proposed instrument with a combination of the measured void fraction, Chexal drift-flux correlation, and Bosio & Malnes' momentum exchange model could predict the phasic mass flow rates within a $15\%$ error. A new momentum exchange model was also proposed from the present data and its implementation provides a $5\%$ improvement to the measured mass flow rate when compared to that with the Bosio & Malnes' model.

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF