• Title/Summary/Keyword: pressure tube

Search Result 2,124, Processing Time 0.035 seconds

A New Small Size Digital Optical Ozone Monitor Using CCD Array as a UV Detector (UV 감지기로서 CCD어레이를 사용한 소형 디지털 광 오존모니터)

  • Chung, Wan-Young;Lee, Seung-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.158-163
    • /
    • 2008
  • Ozone monitor based on UV techniques has been widely used due to their signal stability. The high concentration ozone monitor for real time ozone monitoring from ozone generator was composed of a low pressure mercury lamp as UV source and a photo multiplier tube as UV detector. The structure could be very useful for low price high concentration ozone monitor and showed good linearity to ozone in the concentration range between 0.05 and 2wt%. For accurate ambient ozone monitoring, the system composed of a high power pulsed xenon lamp as UV source, an optical spectrometer with a high sensitivity linear CCD array as UV detector. The optical signal form the CCD array was converted to digital signal, and the digital signal was displayed on screen using PC interface. The developed system showed good linearity and sensitivity in relatively low measuring range between 10ppm and 10,000ppm, and showed some feasibility of hish resolution ozone monitor using CCD array as a photodetecor.

Influence of NCG Charging Mass on the Heat Transport Capacity of Variable Conductance Heat Pipe (불응축가스량이 가변전열 히트파이프의 열수송 특성에 미치는 영향)

  • Suh Jeong-Se;Park Young-Sik;Chung Kyung-Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.320-327
    • /
    • 2006
  • Numerical analysis and experimental study are performed to investigate the effect of heat load and operating temperature on the thermal performance of several variable conductance heat pipe (VCHP) with screen meshed wick. The heat pipe is designed in 200 screen meshes, 500 mm length and 12.7 mm outer diameter tube of copper, water (4.8 g) is used as working fluid and nitrogen as non-condensible gas (NCG). Heat pipe used in this study has evaporator, condenser and adiabatic section, respectively. Analysis values and experimental data of wall temperature distribution along axial length are presented for heat transport capacity, condenser cooling water temperature change, degrees of an inclination angle and operating temperature. These analysis and experiment give the follow findings: For the same charging mass of working fluid, the operating temperature of heat pipe becomes to be high with the increasing of charging mass of NCG. When the heat flux at the evaporator section increases, the vapor pressure in the pipe rises and consequently compresses the NCG to the condenser end part and increases the active length of the condenser. From previous process, it is found out we can control the operating temperature effectively and also the analysis and experimental results are relatively coincided well.

Synthesis of size-controlled ZnO tetrapods sizes using atmospheric microwave plasma system and evaluation of its photocatalytic property (대기압 마이크로웨이브 플라즈마를 이용한 다양한 크기의 ZnO tetrapod 합성 및 광촉매 특성 평가)

  • Heo, Sung-Gyu;Jeong, Goo-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.340-347
    • /
    • 2021
  • Among various metal oxide semiconductors, ZnO has an excellent electrical, optical properties with a wide bandgap of 3.3 eV. It can be applied as a photocatalytic material due to its high absorption rate along with physical and chemical stability to UV light. In addition, it is important to control the morphology of ZnO because the size and shape of the ZnO make difference in physical properties. In this paper, we demonstrate synthesis of size-controlled ZnO tetrapods using an atmospheric pressure plasma system. A micro-sized Zn spherical powder was continuously introduced in the plume of the atmospheric plasma jet ignited with mixture of oxygen and nitrogen. The effect of plasma power and collection sites on ZnO nanostructure was investigated. After the plasma discharge for 10 min, the produced materials deposited inside the 60-cm-long quartz tube were obtained with respect to the distance from the plume. According to the SEM analysis, all the synthesized nanoparticles were found to be ZnO tetrapods ranging from 100 to 600-nm-diameter depending on both applied power and collection site. The photocatalytic efficiency was evaluated by color change of methylene blue solution using UV-Vis spectroscopy. The photocatalytic activity increased with the increase of (101) and (100) plane in ZnO tetrapods, which is caused by enhanced chemical effects of plasma process.

Measurement of outgassing rates of Kevlar and S-Glass materials used in torque tubes of High Tc Superconducting (HTS) Motors

  • Thadela, S.;Muralidhar, BVAS;Kalyani, B;Choudhury, UK;Yadav, SN;Rao, V.V.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.11-15
    • /
    • 2018
  • Torque tubes in High Temperature Superconducting (HTS) motor transfer torque from superconducting field winding rotor to the room temperature shaft. It should have minimum heat conduction property for minimizing the load on cryo-refrigerator. Generally, these torque tubes are made with stainless steel material because of high strength, very low outgassing and low thermal contraction properties at cryogenic temperatures and vacuum conditions. With recent developments in composite materials, these torque tubes could be made of composites such as Kevlar and S-Glass, which have the required properties like high strength and low thermal conductivity at cryogenic temperatures, but with a reduced weight. Development and testing of torque tubes made of these composites for HTS motor are taken up at Bharat Heavy Electricals Limited (BHEL), Hyderabad in collaboration with Central Institute of Plastics and Engineering Technology (CIPET), Chennai and Indian Institute of Technology (IIT), Kharagpur. As these materials are subjected to vacuum, it is important to measure their outgassing rates under vacuum conditions before manufacturing prototype torque tubes. The present study focusses on the outgassing characteristics of Kevlar and S-Glass, using an Outgassing Measurement System (OMS), developed at IIT Kharagpur. The OMS facility works under vacuum environment, in which the test samples are exposed to vacuum conditions over a sufficient period of time. The outgassing measurements for the composite samples were obtained using pressure-rise technique. These studies are useful to quantify the outgassing rate of composite materials under vacuum conditions and to suggest them for manufacturing composite torque tubes used in HTS motors.

Numerical Study on Heat Transfer and Flow Characteristics of Pin Fin with Swept Airfoil Shape Vortex Generator (후퇴익형 형상의 와류발생기가 있는 핀휜 유동의 전열 및 유동 특성 분석에 관한 수치적 연구)

  • Lee, Changhyeong;Oh, Yeongtaek;Bae, Jihwan;Lee, Deukho;Kim, Kuisoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.28-34
    • /
    • 2019
  • In this study, pin-fin arrays, which are widely used for cooling turbine blades, were studied. The vortex generator in pin-fin arrays is located in front of the circular tube. The cross-section of the vortex generator is NACA-9410. The purpose of this study is to analyze heat transfer performance and flow characteristics of pin-fin arrays. The position of vortex generator is changed with the vertical flow direction on the bottom wall. Pin-fin arrays were calculated with 6000, 10000 and 15000 Reynolds number. The commercial program ANSYS v18.0 CFX and the turbulence model $k-{\omega}$ SST were used. As a result, the heat transfer performance increased up to 5.8% and pressure loss increased less than 1%.

General inflation and bifurcation analysis of rubber balloons (고무풍선의 일반화 팽창 및 분기 해석)

  • Park, Moon Shik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.14-24
    • /
    • 2018
  • Several typical hyper-elastic constitutive models that encompass both conventional and advanced ones were investigated for the application of instability problems, including the biaxial tension of a rubber patch and inflation of spherical or cylindrical balloons. The material models included the neo-Hookean model, Mooney-Rivlin model, Gent model, Arruda-Boyce model, Fung model, and Pucci-Saccomandi model. Analyses can be done using membrane equations with particular strain energy density functions. Among the typical strain energy density functions, Kearsley's bifurcation for the Treloar's patch occurs only with the Mooney-Rivlin model. The inflation equation is so generalized that a spherical balloon and tube balloons can be taken into account. From the analyses, the critical material parameters and limit points were identified for material models in terms of the non-dimensional pressure and inflation volume ratio. The bifurcation was then identified and found for each material model of a balloon. When the finite element method was used for the structural instability problems of rubber-like materials, some careful treatments required could be suggested. Overall, care must be taken not only with the analysis technique, but also in selecting constitutive models, particularly the instabilities.

Three-dimensional numerical simulation of hydrogen-induced multi-field coupling behavior in cracked zircaloy cladding tubes

  • Xia, Zhongjia;Wang, Bingzhong;Zhang, Jingyu;Ding, Shurong;Chen, Liang;Pang, Hua;Song, Xiaoming
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.238-248
    • /
    • 2019
  • In the high-temperature and high-pressure irradiation environments, the multi-field coupling processes of hydrogen diffusion, hydride precipitation and mechanical deformation in Zircaloy cladding tubes occur. To simulate this hydrogen-induced complex behavior, a multi-field coupling method is developed, with the irradiation hardening effects and hydride-precipitation-induced expansion and hardening effects involved in the mechanical constitutive relation. The out-pile tests for a cracked cladding tube after irradiation are simulated, and the numerical results of the multi-fields at different temperatures are obtained and analyzed. The results indicate that: (1) the hydrostatic stress gradient is the fundamental factor to activate the hydrogen-induced multi-field coupling behavior excluding the temperature gradient; (2) in the local crack-tip region, hydrides will precipitate faster at the considered higher temperatures, which can be fundamentally attributed to the sensitivity of TSSP and hydrogen diffusion coefficient to temperature. The mechanism is partly explained for the enlarged velocity values of delayed hydride cracking (DHC) at high temperatures before crack arrest. This work lays a foundation for the future research on DHC.

Effect of Solution Temperature on the Cavitation Degradation Properties of Epoxy Coatings for Seawater Piping

  • Jeon, J.M.;Yoo, Y.R.;Jeong, M.J.;Kim, Y.C.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.335-346
    • /
    • 2021
  • Since epoxy resin coating shows excellent properties in formability, adhesion, and corrosion resistance, they have been extensively used in many industries. However, various types of damages in the epoxy coated tube within a relative short time have been reported due to cavitation erosion, liquid impingement, variation of temperature and pressure. Nevertheless, there has been little research on the effect of temperature on the cavitation degradation of epoxy coatings. Therefore, this work used an ultrasonic cavitation tester to focus on the effect of solution temperature on the cavitation properties of 3 kinds of epoxy coatings in 3.5% NaCl. The cavitation properties were discussed basis on the material properties and environmental aspects. As the solution temperature increased, even though with large fluctuation, the cavitation degradation rates of A and B coatings were reduced rapidly, but the rate of C coating was decreased gradually. In addition to the cushioning effect, the reason that the cavitation degradation rate reduced with solution temperature was partly related to the brittle fracture and water absorptivity of the epoxy coatings, and the water density, but was little related to the shape and composition of the compound in the coatings or the phase transition of the epoxy coating.

Nationwide Analysis of Mortality Rates and Related Surgical Procedures in Hearing Disability Patients in South Korea

  • Han, Hye Min;Kwak, Ji Won;Kim, Hyeon Geun;Lee, Hoyoung;Kim, Young-Chan;Park, Euyhyun;Jung, Hak Hyun;Im, Gi Jung
    • Korean Journal of Audiology
    • /
    • v.24 no.4
    • /
    • pp.204-209
    • /
    • 2020
  • Background and Objectives: Hearing loss (HL) and its repercussions are major problems in today's society. There are limited data on the relationship between degree of HL and otologic disorders. The aim of this study is to estimate mortality rates, rates of sudden idiopathic HL and related otologic surgical procedures in hearing disability patients in South Korea. Subjects and Methods: Retrospective medical data for 160,205 patients with hearing disability was extracted. Mortality rates, rates of sudden idiopathic HL and related otologic surgical procedures were compared with a normal control group consisting of 865,475 people; approximately 5 times the number of hearing disability patients. Results: According to the Korean National Disability Registry (NDR), 0.458% of the population in South Korea suffered from hearing disability in 2015. Higher rates of mortality and sudden idiopathic HL were reported in hearing disability patients, increasing up to a maximum of 1.594 times and 1,039.695 times, respectively, compared to the normal control group. Mastoidectomy surgery was 2.5 times more frequently performed and pressure equalizing (PE) tube insertion was about 15 times more frequently performed in hearing disability patients. Conclusions: Hearing disability is related to higher risks of mortality, sudden idiopathic HL and otologic surgical procedures, including mastoidectomy and PE tubing.

Nationwide Analysis of Mortality Rates and Related Surgical Procedures in Hearing Disability Patients in South Korea

  • Han, Hye Min;Kwak, Ji Won;Kim, Hyeon Geun;Lee, Hoyoung;Kim, Young-Chan;Park, Euyhyun;Jung, Hak Hyun;Im, Gi Jung
    • Journal of Audiology & Otology
    • /
    • v.24 no.4
    • /
    • pp.204-209
    • /
    • 2020
  • Background and Objectives: Hearing loss (HL) and its repercussions are major problems in today's society. There are limited data on the relationship between degree of HL and otologic disorders. The aim of this study is to estimate mortality rates, rates of sudden idiopathic HL and related otologic surgical procedures in hearing disability patients in South Korea. Subjects and Methods: Retrospective medical data for 160,205 patients with hearing disability was extracted. Mortality rates, rates of sudden idiopathic HL and related otologic surgical procedures were compared with a normal control group consisting of 865,475 people; approximately 5 times the number of hearing disability patients. Results: According to the Korean National Disability Registry (NDR), 0.458% of the population in South Korea suffered from hearing disability in 2015. Higher rates of mortality and sudden idiopathic HL were reported in hearing disability patients, increasing up to a maximum of 1.594 times and 1,039.695 times, respectively, compared to the normal control group. Mastoidectomy surgery was 2.5 times more frequently performed and pressure equalizing (PE) tube insertion was about 15 times more frequently performed in hearing disability patients. Conclusions: Hearing disability is related to higher risks of mortality, sudden idiopathic HL and otologic surgical procedures, including mastoidectomy and PE tubing.