• Title/Summary/Keyword: pressure surges

Search Result 35, Processing Time 0.016 seconds

A Study on Dynamic Characteristics of Hydraulic Motor Brake System with Counter Balance Valve (카운터 밸런스 밸브를 내장한 유압 모터 브레이크 시스템의 동특성)

  • Yun, So-Nam;Lee, Ill-Yeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.3
    • /
    • pp.214-219
    • /
    • 1993
  • Counter balance valve is used as one part of hydraulic motor brake system. The function of this valve is to protect over-run or free falling of inertia load. But occasionally the brake system with counter balance valve makes some undesirable problems such as pressure surges or vibrations. These problems may hurt system safety and driver's conformability. Nevertheless, studies on dynamic characteristics of hydraulic system including counter balance valve are very rare, so further accumulation of research results are required. In this study, for the purpose of easy estimation about dynamic characteristics of hydraulic system including counter balance valve, precise formulation describing fluid dynamics and valve dynamics under various boundary conditions were made. The equations obtained in the preceding process include some parameters that must be got experimentally. Flow coefficients of valve and choke are the most significant ones among the parameters. So these parameters are obtained experimentally in this study, and experimental equations obtained from the experimental data were used for numerical calculation. The equations were analysed by numerical integration using Runge-Kutta method, because the equations contain various nonlinear terms. From the numerical analysis, it was verified that the dynamic response of counter balance valve and pressure variation at each elements can be estimated very easily. So the analysing method developed in this study enabled very easy estimating the relation between the performances of counter balance valve and various physical parameters related to the valve. Conclusively, it is said that the results obtained in this study can be used very usefully to develop a new type counter balance valve or to apply the valve to actual hydraulic system for various industrial equipments.

  • PDF

Analysis of Reliability of Weather Fields for Typhoon Maemi (0314) (태풍 기상장의 신뢰도 분석: 태풍 매미(0314))

  • Yoon, Sung Bum;Jeong, Weon Mu;Jho, Myeong Hwan;Ryu, Kyong Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.351-362
    • /
    • 2020
  • Numerical simulations of the storm surge and waves induced by the Typhoon Maemi incident on the south sea of Korea in 2003 are performed using the JMA-MSM forecast weather field, NCEP-CFSR reanalysis weather field, ECMWF-ERA5 reanalysis weather field, and the pressure and wind fields obtained using the best track information provided by JTWC. The calculated surge heights are compared with the time history observed at harbours along the coasts of Korea. For the waves occurring coincidentally with the storm surges the calculated significant wave heights are compared with the measured data. Based on the comparison of surge and wave heights the assessment of the reliability of various weather fields is performed. As a result the JMA-MSM weather fields gives the highest reliability, and the weather field obtained using JTWC best track information gives also relatively good agreement. The ECMWF-ERA5 gives in general surge and wave heights weaker than the measured. The reliability of NCEP-CFSR turns out to be the worst for this special case of Typhoon Maemi. Based on the results of this study it is found that the reliable weather fields are essential for the accurate simulation of storm surges and waves.

Characteristics of Atmospheric Circulation and Heat Source related to Winter Cold Surge in Korea (한반도 겨울철 한파와 관련된 대기 순환과 열원의 특성)

  • Kim Maeng-Ki;Shin Sung-Chul;Lee Woo-Seop
    • Journal of the Korean earth science society
    • /
    • v.26 no.6
    • /
    • pp.560-572
    • /
    • 2005
  • This study investigates the characteristics of atmospheric circulation and the heat source $(Q_1)$ related to the winter cold surge in Korea from 1979 to 1999. The occurrence frequency of cold surge is about one event per year and $60\%$ of the total events occurred during the former period, before 1989. During the cold surge, the pressure pattern shows more dominant east-west dipole circulation pattern in the lower troposphere and the effect of upper level trough is stronger than normal cases. Temperature falling pattern over Korea shows that the pattern opposite to the temperature structure over Lake Baikal and temperature change has opposite signs between the low-middle level and upper level, with the boundary at 400 hPa. The analysis of heat source shows that atmospheric cooling by cold advection during the cold surge is balanced by adiabatic warming due to downward motion, indicating that the movement path of cold core is associated with that of heat sink. Therefore, the movement mechanism of the heat source and sink should be well known for understanding the maintenance mechanism of cold surge and predicting cold surges.

Vulnerability Analyses of Wave Overtopping Inundation by Synthesized Typhoons with Sea-Level Rise (해수면 상승과 빈도 합성태풍이 고려된 월파범람 위험성 분석)

  • Kim, HyeonJeong;Suh, SeungWon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.253-264
    • /
    • 2019
  • Storm surges caused by a typhoon occur during the summer season, when the sea-level is higher than the annual average due to steric effect. In this study, we analyzed the sea-level pressure and tidal data collected in 1 h intervals at Incheon, Kunsan, Mokpo, Seogwipo stations on the Yellow Sea coast to analyze the summer season storm surge and wave overtopping. According to our analyses, the summer mean sea-level rise on the west and south coasts is approximately 20 cm and 15 to 20 cm higher than the annual mean sea-level rise. Changes in sea-level rise are closely related to changes in seasonal sea-level pressure, within the range of 1.58 to 1.73 cm/hPa. These correlated mechanisms generates a phase difference of one month or more. The 18.6 year long period tidal constituents indicate that in 2090, the amplitude of the $M_2$ basin peaks on the southwest coast. Therefore, there is a need to analyze the target year for global warming and sea-level rise in 2090. Wave overtopping was simulated considering annual mean sea-level rise, summer sea level rise, the combined effect of nodal factor variation, and 100-year frequency storm surge. As a result, flooding by wave overtopping occurs in the area of Suyong Bay, Busan. In 2090, overtopping discharges are more than doubled than those in Marine City by the recent typhoon Chaba. Adequate coastal design is needed to prepare for flood vulnerability.

Objective Estimation of the Maximum Wind Position in Typhoon using the Cloud Top Temperature Analysis of the Satellite TBB Data (위성 TBB 자료의 운정온도 분석을 이용한 태풍 최대 풍속 지점의 객관적 결정)

  • Ha, Kyung-Ja;Oh, Byung-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.1 no.1
    • /
    • pp.86-98
    • /
    • 1998
  • In order to provide an information as input data of possible storm surges in advance, the typhoon center and maximum wind position analysis scheme must be developed for the initialization of pressure and wind field.This study proposes a semi-automatical and objective analysis method and a procedure on a real time basis using the satellite TBB data of the GMS IR1, NOAA satellite CH4 and CH5, and shows the result of an experimental analysis. It includes a simple method of determining the parameters of the typhoon using minimum top temperature of the convective cloud near the inner eyewall. The method analyzing the isotropic cross sectional variation of TBB gradient from center to environment was developed to determine the center of Rmax of typhoon. This position of intense eyewall from typhoon center can be considered as the position of maximum wind. The results of estimation of typhoon center show very good agreement to the results of synoptic analysis. It is found that the Rmax is approximately 50-200km. From the comparison of the GMS and NOAA IR TBB data, it is found that the Rmax from NOAA data tends to be longer than those from GMS data.