• Title/Summary/Keyword: pressure surge

Search Result 219, Processing Time 0.03 seconds

Case Study of Repair Works on Surge Suppression Device for Booster Pumping Station (가압펌프장의 수격완화설비에 대한 보수·보강 사례)

  • Kim, Sang-gyun;Lee, Dong-keun;Lee, Gye-bok;Kim, Kyung-yup
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.4 s.31
    • /
    • pp.20-26
    • /
    • 2005
  • When the pumps are started or stopped for the operation or tripped due to the power failure, the hydraulic transients occur as a result of the sudden change in velocity. The field tests on the waterhammer were carried out for Pangyo booster pumping station in which had six booster pumps and two in-line pumps with the motor of output 1,700 kW, respectively. The booster pumping station was equipped with the pump control valve as the main surge suppression device, and the surge relief valve as auxiliary one. But the pump control valve had not early controlled in the planned closing mode, the slamming occurred to the valve of which abruptly closed during the large reverse flow. Because the positive pressure wave caused by the pump failure was superposed on the slam surge, the upsurge increased so extremely that the pump control valve was damaged. After the air chambers were additionally installed in the booster pumping station, it was preyed that the water supply system acquire the safety and reliability on the pressure surge.

A Study on Capacity Selection of Accumulator by Mathematical Model in Hydraulic Regenerative Brake System (수학적 모델에 의한 유압 재생 브레이크 시스템의 축압기 용량 선정에 관한 연구)

  • 이재구;함영복;김도태;김성동
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.48-55
    • /
    • 2001
  • An accumulator in hydraulic systems stores kinetic energy during braking action, and then that control hasty surge pres-sure. This study suggests a method to select the capacity of accumulator to control surge pressure to a desired degree. The selection method is based upon a trial and error approach and computer simulation. A mathematical dynamic model of the system was derived and the parameters in the model were identified from experimental data. A series of computer simulation were done for the brake action. The results of the simulation work were compared with those of experiments. These results of the computer simular-tion and experiments show that the proposed method can be applied effectively to control the surge pressure of the hydraulic regenerative brake systems.

  • PDF

A Study on Estimating Characteristics of ABS Using High Frequency PWM Control (고주파수 PWM 제어를 이용한 ABS의 특성 평가에 관한 연구)

  • Kim, Byeong-Woo;Lee, Yong-Joo;Park, Ho
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.69-74
    • /
    • 2004
  • In general the surge pressure generated in hydraulic systems causes noise, vibration and odd effect to the system. To reduce the surge pressure, high frequency PWM control of 20KHz was attempted. To estimate the braking noise caused by surge, a vehicle equipped with on-board ABS hydraulic modulator has been experimented with respect to the various breaking condition. Thorough this experiments, it was found that breaking noise has been reduced using high frequency PWM control method compare with low frequency method. To evaluate high frequency control m practice, including verification of general functionality, EMI tests was experimented. Its was found that it is necessary to have the solution to electromagnetic interference(EMI) generated by switching elements.

Optimum design of direct spring loaded pressure relief valve in water distribution system using multi-objective genetic algorithm (다목적 유전자 알고리즘을 이용한 상수관망에서 스프링 서지 완화 밸브의 최적화)

  • Kim, Hyunjun;Baek, Dawon;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.115-122
    • /
    • 2018
  • Direct spring loaded pressure relief valve(DSLPRV) is a safety valve to relax surge pressure of the pipeline system. DSLPRV is one of widely used safety valves for its simplicity and efficiency. However, instability of the DSLPRV can caused by various reasons such as insufficient valve volume, natural vibration of the spring, etc. In order to improve reliability of DSLPRV, proper selection of design factors of DSLPRV is important. In this study, methodology for selecting design factors for DSLPRV was proposed. Dynamics of the DSLPRV disk was integrated into conventional 1D surge pressure analysis. Multi-objective genetic algorithm was also used to search optimum design factors for DSLPRV.

Comparative Study on Water Hammer for Pump Station in High Pressurized Pipes in Kuwait

  • Shim, Kyu Dae;Kang, Yong Suk;Choung, Joon Yeon;Abdellatif, Mohamed;Kim, Dong Kyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.265-269
    • /
    • 2017
  • Because of abrupt changes for velocity in water, transient flow is occurred in practical life. To reduce and avoid the high or low pressure of pipe network system, various surge protection facilities are used to prevent the risk in pipe network system. Especially, we focused on study not only preventing positive and negative pressure but also selecting adequate equipment for high pressurized pipelines. Several critical cases were considered by undertaking a steady state hydraulic study and transient dynamic simulation and we suggested that the surge vessel of various surge protection system was recommended to control high and low pressures on pipeline system in perspective.

  • PDF

Design of Anti-Surge Valve for FPSO Fuel Gas Compressor System (FPSO용 연료가스압축 시스템을 위한 서지방지 밸브 설계)

  • Park, Hyung-Wook;Cho, Jong-Rae;Lee, Seung-Min;Park, Jong-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.443-450
    • /
    • 2011
  • Fuel gas compressor system is applied to medium FPSO. In order to avoid surge, this system used the anti-surge valves. When surge occurs it may lead to system's fracture. So anti-surge valves are evaluated structural strength and structural safety. Especially, in emergency mode, valves are must be guaranteed structural safety. In this study, structural strength and structural safety of anti-surge valve was evaluated using the numerical simulation. Unigraphics NX 4.0 was used as Geometrical models, structural strength and structural safety calculation were carried out by ANSYS Workbench 12.1. The ASME Boiler & Pressure Vessel Code is refer to allowable strength and safety factor of the valves.

Waterhammer For In-line Booster Pump (직결식 펌프의 수격현상)

  • Kim, S C.;Lee, K. B.;Kim, K. Y.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.208-216
    • /
    • 2004
  • The waterhammer occured when the pumps are started or stopped for the operation or tripped due to the power failure, the hydraulic transients occur as a result of the sudden change in velocity. The field tests of the waterhammer were carried out for PanGyo booster pumping station. The PanGyo pumuing station was installed booster pump of 6 sets and in-line pump of 2 sets. The main surge suppression device was equipped with the pump control valve and the surge relief valve as auxiliary. However, the pump control valve had not early controlled in the planned closing mode, and the slamming occurred to the valve of which abruptly closed during the large reverse flow. Because the pressure wave caused by the pump failure was superposed on the slam surge, the upsurge increased so extremely that the shaft of the valve was damaged. After the addition surge suppression device was equipped with air chamber. Further more in-line pump is needed surge suppression device that the pumping station acquired the safety and reliability for the pressure surge.

  • PDF

A Study on Absorption Device of Surge Rising Pressure Occurring when Suddenly Braking Action in the Hydraulic Driving Part of Textiles Let off (섬유송출 유압구동부 급제동시 발생하는 충격상승압 흡수장치에 관한 연구)

  • 이재구;김정현;김도태;김성동;정선환
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.84-91
    • /
    • 2003
  • The equipment of textiles let off is a part of inspection machine which inspects finished textiles and it checks up textiles through that. This study suggests a method to select the capacity and initial gas pressure of accumulator to control surge rising pressure occurring when suddenly braking action to a desired degree. An accumulator in hydraulic systems is by hydraulic machinery which stores kinetic energy of inertia body during braking. A series of computer simulations were done for the brake action The results of the simulation work were compared with those of experiments.

The Performance Characteristics of Anti-Surge Devices for High Head Cooling Water Systems in 1,000 MW Thermal Power plants (고수두 1,000 MW 석탄화력발전소 냉각수계통 수격방지장치의 성능특성)

  • Kim, Keun-Pil;Yoo, Hoseon
    • Plant Journal
    • /
    • v.15 no.4
    • /
    • pp.36-42
    • /
    • 2019
  • In recent, according to the tightening of environment regulation policy, the height of the site of the power plant is increased and the length of the cooling water pipe is increased. This has a serious impact on the stability of the plant. This study analyzes the transient phenomenon using LIQT 7.2, an unsteady state one-dimensional analysis software, to secure the stability of 1,000 MW high-capacity coal-fired power plant cooling water system with high head. To prevent water hammer, The effects on performance characteristics were predicted by individual and combination application. The surge pressure of the cooling water which occurs when the pump was stopped without installing the anti-surge devices was the largest at the pump outlet side. The most effective and simple way to reduce surge pressure in these cooling water systems is to combine a vacuum breaker with a hydraulic non-return valve, which is an essential device for pump protection.

Development of an Operational Storm Surge Prediction System for the Korean Coast

  • Park, Kwang-Soon;Lee, Jong-Chan;Jun, Ki-Cheon;Kim, Sang-Ik;Kwon, Jae-Il
    • Ocean and Polar Research
    • /
    • v.31 no.4
    • /
    • pp.369-377
    • /
    • 2009
  • Performance of the Korea Ocean Research and Development Institute (KORDI) operational storm surge prediction system for the Korean coast is presented here. Results for storm surge hindcasts and forecasts calculations were analyzed. The KORDI storm surge system consists of two important components. The first component is atmospheric models, based on US Army Corps of Engineers (CE) wind model and the Weather Research and Forecasting (WRF) model, and the second components is the KORDI-storm surge model (KORDI-S). The atmospheric inputs are calculated by the CE wind model for typhoon period and by the WRF model for non-typhoon period. The KORDI-S calculates the storm surges using the atmospheric inputs and has 3-step nesting grids with the smallest horizontal resolution of ${\sim}$300 m. The system runs twice daily for a 72-hour storm surge prediction. It successfully reproduced storm surge signals around the Korean Peninsula for a selection of four major typhoons, which recorded the maximum storm surge heights ranging from 104 to 212 cm. The operational capability of this system was tested for forecasts of Typhoon Nari in 2007 and a low-pressure event on August 27, 2009. This system responded correctly to the given typhoon information for Typhoon Nari. In particular, for the low-pressure event the system warned of storm surge occurrence approximately 68 hours ahead.