• Title/Summary/Keyword: pressure loss coefficient

Search Result 255, Processing Time 0.023 seconds

Rotordynamic Characteristics of Floating Ring Seals in Rocket Turbopumps

  • Tokunaga, Yuichiro;Inoue, Hideyuki;Hiromatsu, Jun;Iguchi, Tetsuya;Kuroki, Yasuhiro;Uchiumi, Masaharu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.194-204
    • /
    • 2016
  • Floating ring seals offer an opportunity to reduce leakage flows significantly in rotating machinery. Accordingly, they have been applied successfully to rotating machinery within the last several decades. For rocket turbopump applications, fundamental behavior and design philosophy have been revealed. However, further work is needed to explore the rotordynamic characteristics associated with rotor vibrations. In this study, rotordynamic forces for floating ring seals under rotor's whirling motions are calculated to elucidate rotordynamic characteristics. Comparisons between numerical simulation results and experiments demonstrated in our previous report are carried out. The three-dimensional Reynolds equation is solved by the finite-difference method to calculate hydrodynamic pressure distributions and the leakage flow rate. The entrance loss at the upstream inlet of the seal ring is calculated to estimate the Lomakin effect. The friction force at the secondary seal surface is also considered. Numerical simulation results showed that the rotordynamic forces of this type of floating ring seal are determined mainly by the friction force at the secondary seal surface. The seal ring is positioned almost concentrically relative to the rotor by the Lomakin effect. Numerical simulations agree quite well with the experimental results.

Improvement of the Aerothermal Environment for a 90° Turning Duct by an Endwall Boundary Layer Fence (90° 곡관에서의 경계층 판을 이용한 열유동 환경 개선)

  • Cho, Jong-Jae;Kim, Kui-Soon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.25-35
    • /
    • 2012
  • An endwall boundary layer fence technique was adapted to improve the aerothermal environment of a gas turbine passage. The shape optimization of the fence was performed to maximize the improvement. The turbine passage was simulated by a $90^{\circ}$ turning duct (ReD=360,000). The main purpose of the present investigation was to focus on finding a endwall boundary layer fence with minimum total pressure loss in the passage and heat transfer coefficient on the endwall of the duct. Anothor objective function was to minimize the area on the endwall of the duct. An approximate optimization method was used for the investigation to secure the computational efficiency. Results indicated that a significant improvement in aerodynamic environment can be achieved through the application of the fence. Improvement of the thermal environment was smaller than that of the aerodynamic enviroment.

Measurements of Turbulent Flow In a$6\times{6}$ Rod Bundle with Spacer Grids (지지격자를 갖는 $6\times{6}$ 봉다발에서의 난류유동 측정)

  • Yang, Sun-Kyu;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.162-174
    • /
    • 1996
  • The local hydraulic characteristics in a single phase flow of a 6$\times$6 rod bundle with neighboring different spacer grids were measured by using a LDV(Laser Doppler Velocimeter) system. 6$\times$6 rod bundle is formed by two 3$\times$6 rod bundles with different spacer grids. The objective of this study in a rod bundle is to investigate the thermal-hydraulic interactions between different spacer grids with different configurations and resistance. By using a LDV system, the velocity and turbulent intensity in axial and horizontal directions ore measured. Pressure drop measurements ore also performed to evaluate the loss coefficient for the spacer grid and the friction factor for rod bundles. Implications concerning thermal mining due to spacer grids were investigated based on the hydraulic test results. Swirl factor, which is assumed as a qualitative criteria for DNB(departure from nucleate boiling), was defined and estimated from the horizontal velocity result.

  • PDF

Respiratory air flow measuring technique without sensing element on the flow stream (호흡경로 상에 감지소자가 없는 새로운 호흡기류 계측기술)

  • Lee, In-Kwang;Park, Jun-Oh;Lee, Su-Ok;Shin, Eun-Young;Kim, Kyung-Chun;Kim, Kyung-Ah;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.294-300
    • /
    • 2009
  • Cardiopulmonary resuscitation(CPR) is performed by artificial ventilation and thoracic compression for the patient under emergent situation to maintain at least the minimum level of respiration and blood circulation for life survival. Quality of the pre-hospital CPR not only significantly affects the patient's survival rate but also minimizes side effects caused by CPR. Good quality CPR requires monitoring respiration, however, traditional respiratory air flow transducers cannot be used because the transducer elements are located on the flow axis. The present study developed a new technique with no physical object on the flow stream but enabling the air flow measurement and easily incorporated with the CPR devices. A turbulence chamber was formed in the middle of the respiratory tube by locally enlarging the cross-sectional area where the flow related turbulence was generated inducing energy loss which was in turn converted into pressure difference. The turbulence chamber was simply an empty enlarged air space, thus no physical object was placed on the flow stream, but still the flow rate could be evaluated. Both inspiratory and expiratory flows were obtained with symmetric measurement characteristics. Quadratic curve fitting provided excellent calibration formula with a correlation coefficient>0.999 (P<0.0001) and the mean relative error<1 %. The present results can be usefully applied to accurately monitor the air flow rate during CPR.

Spacer Grid Effects on Turbulent Flow in Rod Bundles (지지격자가 봉다발 난류유동에 미치는 영향)

  • Yang, Sun-Kyu;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.56-71
    • /
    • 1996
  • The local hydrulic characteristics in subchannels of 5$\times$5 nuclear fuel bundles with spacer grids were measured at upstream and downstream of the spacer grid for the investigation of the spacer grid effects on turbulent flow structure by using an LDV(Laser Doppler Velocimeter). The measured parameters are axial velocity and turbulent intensity, skewness factor, and flatness factor. Pressure drops were also measured to evaluate the loss coefficient for the spacer grid and the friction factor for rod bundles. From these data, it was found that the turbulent mixing and forced mixing occur up to $x/D^h=10$ and 20 from the spacer grid, respectively. The turbulence decay behind spacer grid behaves in the similar decay rate as turbulent flow through mesh grids or screens. Mixing factors useful in subchannel analysis code were correlated from the data and show the highest value near spacer grid and then have a stable values.

  • PDF

Surface Hardening and Wear Properties of AISI 410 Martensitic Stainless Steel by High & Low Temperature Gaseous Nitriding (고온 가스 질화와 저온 가스 질화 방법에 따른 AISI 410 마르텐사이트 스테인레스강의 경화층 및 마모 특성)

  • Son, Seok-Won;Lee, Won-Beom
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.249-255
    • /
    • 2018
  • High temperature and low temperature gaseous nitriding was performed in order to study of the surface hardening and wear properties of the nitrided AISI 410 Martensitic stainless steels. High temperature gaseous nitiridng (HTGN) was carried out using partial pressure $N_2$ gas at $1,100^{\circ}C$ for 10 hour, and Low temperature gaseous nitiridng (LTGN) was conducted in a gas mixture of NH3 and N2 at $470^{\circ}C$ for 10 hour. The nitrided samples were characterized by microhardness measurements, optical microscopy and scanning electron microscopy. The phases were identified by X-ray diffraction and nitrogen concentration was analyzed by GD-OES. The HTGN specimen had a surface hardness of about $700HV_{0.1}$, $350{\mu}m$ of case depth. A ${\sim}50{\mu}m$ thick, $1,250HV_{0.1}$ hard nitrided case formed at the surface of the AISI 410 steel by LTGN, composed nitrogen supersaturated expanded martensite and ${\varepsilon}-Fe_{24}N_{10}$ iron nitrides. Additionally, the results of the wear tests, carried out LTGN specimen was low friction coefficient and high worn mass loss of ball. The increase in wear resistance can be mainly attributed to the increase in hardness and to the lattice distortion caused by higher nitrogen concentration.

Improvement of the flow characteristics for a $90^{\circ}$ turning duct by the nonaxisymmetric endwall and endwall boundary layer fence ($90^{\circ}$ 곡관에서의 비축대칭 끝벽과 끝벽 경계층 판을 이용한 유동특성 향상)

  • Cho, Jong-Jae;Kim, Sang-Jo;Seo, Jong-Chul;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.406-413
    • /
    • 2011
  • This paper presents the shape optimization of a nonaxisymmetric endwall and endwall boundary layer fence which improve the aerothermal environment of a gas turbine passage. The endwall and fence methods were used simultaneously. The turbine passage was simulated by a $90^{\circ}$ turning duct ($Re_D$=360,000). The main purpose of the present investigation was to focus on finding a nonaxisymmetric endwall and boundary layer fence with minimum total pressure loss in the passage and heat transfer coefficient on the endwall of the duct. An approximate optimization method was used for the investigation to secure the computational efficiency. Results indicated that a significant improvement in aerothermal environment can be achieved through the application of a nonaxisymmetric endwall and boundary layer fence.

  • PDF

Comparison Of CATHARE2 And RELAP5/MOD3 Predictions On The BETHSY 6.2% TC Small-Break Loss-Of-Coolant Experiment (CATHARE2와 RELAP5/MOD3를 이용한 BETHSY 6.2 TC 소형 냉각재상실사고 실험결과의 해석)

  • Chung, Young-Jong;Jeong, Jae-Jun;Chang, Won-Pyo;Kim, Dong-Su
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.126-139
    • /
    • 1994
  • Best-estimate thermal-hydraulic codes, CATHARE2 V1.2 and RELAP5/MOD3, hate been assessed against the BETHSY 6.2 tc six-inch cold leg break loss-of-coolant accident (LOCA) test. Main objective is to analyze the overall capabilities of the two codes on physical phenomena of concern during the small break LOCA i.e. two-phase critical flow, depressurization, core water level de-pression, loop seal clearing, liquid holdup, etc. The calculation results show that the too codes predict well both in the occurrences and trends of major two-phase flow phenomena observed. Especially, the CATHARE2 calculations show better agreements with the experimental data. However, the two codes, in common, show some deviations in the predictions of loop seal clearing, collapsed core water level after the loop seal clearing, and accumulator injection behaviors. The discrepancies found from the comprision with the experimental data are larger in the RELAP5 results than in the CATHARE2. To analyze the deviations of the two code predictions in detail, several sensitivity calculations have been performed. In addition to the change of two-phase discharge coefficients for the break junction, fine nodalization and some corrections of the interphase drag term are made. For CATHARE2, the change of interphase drag force improves the mass distribution in the primary side. And the prediction of SG pressure is improved by the modification of boundary conditions. For RELAP5, any single input change doesn't improve the whole result and it is found that the interphase drag model has still large uncertainties.

  • PDF

The Development of Obesity Age (OA) for Health Index of Middle Aged Obese Women (중년기 비만여성에 있어서 건강지표를 위한 비만연령의 개발)

  • Lee, Dong-Jun;Park, Tae-Seop
    • Journal of Life Science
    • /
    • v.19 no.10
    • /
    • pp.1403-1409
    • /
    • 2009
  • The purpose of this study was to compare Obesity Age (OA) and chronological age, to calculate Obesity Age (OA), which gauges the state of obesity, and to analyze presented factors of obesity using expectant factors on middle-aged obese women. The subjects were one hundred twenty seven middle-aged obese women ($49.6\pm7.3$ yr, BMI $29.41\pm2.9$, fat $36.8\pm4.6%$) who participated in different weight loss programs three times. The body composition, physical fitness, blood pressure and blood were measured before the weight loss programs. Informed consent was obtained from all subjects before enrollment in the study. The regression equation is as follows: (1) OAS (Obesity Age Score)=$0.106*X_1+0.035*X_2+0.048*X_3+0.041*X_4+0.003*X_5-0.037*X_6-10.667$ ($X_1$: BMI, $X_2$: weight, $X_3$: %fat, $X_4$: WC, $X_5$: TG, $X_6$: $VO_{2max}$), (2) OA (Obesity Age)=7.3*OAS+49.6*(-1), (3) Z (correction factor)=(CA-49.6)(1-0.03), (4) OAc (corrected Obesity Age)=1.03*CA-7.3*OAS+1.47. The comparison of corrected Obesity Age (OAc) and chronological age did not have any differences, and the average of the OAc was close to chronological age. The correlation coefficient between the OAc and chronological age was r=0.724 (p<0.05). The equation can be utilized for middle-aged obese women, because it could evaluate the obesity-related factors by including BMI, body weight, %fat, waist circumference, triglycerides and $VO_{2max}$.

Development and Application of Siphon Breaker Simulation Program (사이펀 차단기 시뮬레이션 프로그램의 개발 및 활용)

  • Lee, Kwon-Yeong;Kim, Wan-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.346-353
    • /
    • 2016
  • In the design conditions of some research reactors, the siphon phenomenon can cause continuous efflux of water during pipe rupture. A siphon breaker is a safety device that can prevent water efflux effectively. However, the analysis of the siphon breaking is complicated because many variables must be included in the calculation process. For this reason, a simulation program was developed with a user-friendly GUI to analyze the siphon breaking easily. The program was developed by MFC programming using Visual Studio 2012 in Windows 8. After saving the input parameters from a user, the program proceeds with three steps of calculation using fluid mechanics formulas. Bernoulli's equation is used to calculate the velocity, quantity, water level, undershooting, pressure, loss coefficient, and factors related to the two-phase flow. The Chisholm model is used to predict the results from a real-scale experiment. The simulation results are shown in a graph, through which a user can examine the total breaking situation. It is also possible to save all of the resulting data. The program allows a user to easily confirm the status of the siphon breaking and would be helpful in the design of siphon breakers.