• 제목/요약/키워드: pressure fracture

검색결과 883건 처리시간 0.029초

NRC 증기압 암석 파쇄제에 의한 PMMA 블록의 동적 파괴 과정에 관한 실험 및 수치해석적 연구 (Experimental and Numerical Study on the Dynamic Fracture Processes of PMMA Block by NRC Vapor Pressure Fracture Agent)

  • 민경조
    • 한국방재안전학회논문집
    • /
    • 제16권1호
    • /
    • pp.91-103
    • /
    • 2023
  • 본 연구의 목적은 테르밋 반응으로 결정화된 액체혼합물을 순간적으로 기화시켜, 이에 따라 발생되는 증기압을 이용하여 암석 및 콘크리트를 파쇄시키는 Nonex Rock Cracker(NRC) 암석 파쇄제의 동적 파괴 특성을 분석하고 파괴패턴을 예측할 수 있는 해석기법을 개발하기 위함이다. NRC 암석 파쇄제의 순간적의 증기압 발생 특성을 분석하기 위하여 인공취성재료로 알려진 Polymethyl methacrylate(PMMA) 블록을 대상으로 NRC를 장전하여 파쇄시험을 수행하였다. NRC의 증기압 발생순간을 촬영하기 위하여 초고속 카메라를 활용하였으며, 장약실과 연결된 관측공에 동적압력게이지를 부착하여 장약공 압력-시간이력을 계측하였다. 증기압 암석 파쇄제에 의한 PMMA 블록의 파괴패턴을 모사하기 위하여 2차원 동적 파괴 과정 해석 기법인 2D Dynamic Fracture Process Analysis(2DDFPA)가 활용되었으며, 계측된 장약공 압력-시간이력을 고려한 입사압력함수를 결정하였다. 제안된 해석조건을 활용하여 화강암재료와 고성능 폭약에 의하여 발생될 수 있는 파괴패턴에 대하여 고찰하였다.

정수압력에 따른 해수흡수된 Carbon/Epoxy 복합재의 압축 및 파괴특성에 대한 연구 (Compressive and Fracture Characteristics of Seawater-abrobed Carbon-Epoxy Composite under Hydrostatic Pressure Environment)

  • 이지훈;이경엽;김현주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.438-441
    • /
    • 2004
  • In this study, we investigated compressive characteristics of seawater-absorbed carbon-epoxy composite under hydrostatic pressure environment. The hydrostatic pressures applied were 0.1 MPa, 100 MPa, 200 MPa, and 270 MPa. The results showed that the compressive elastic modulus increased about 10 % as the hydrostatic pressure increased from 0.1 MPa to 200 MPa. The modulus increased 2.3 % more as the pressure increased to 270 MPa. Fracture strength and fracture strain increased with pressure in a linear fashion. Fracture strength increased 28 % and fracture strain increased 8.5 % as the hydrostatic pressure increased from 0.1 MPa to 270 MPa.

  • PDF

준등방성 적충복합재에 있어 압력이 압축 파괴인성에 미치는 영향에 대한 연구 (A Study of the Pressure Effect on the Compressive Fracture Toughness of Quasi-Isotropic Composites)

  • 이경엽;곽대순;김상녕;이중희
    • Composites Research
    • /
    • 제14권3호
    • /
    • pp.51-56
    • /
    • 2001
  • 섬유강화 고분자기지 복합재에 있어 탄성계수, 최대응력, 최대변형률, 파괴특성 등이 압력에 의해 영향을 받는다는 것은 잘 알려진 사실이다. 본 연구에서는 준등방성이며 두꺼운 두께를 갖는 [0$^{\circ}$/$\pm$45$^{\circ}$/90$^{\circ}$]$_{11s}$ 로 적층된 탄소섬유/에폭시 복합재에 있어 압력을 0.1 MPa, 100 MPa, 200 MPa, 300 MPa로 변화시켜 압축 파괴실험을 수행하였으며 이로부터 압력변화에 따른 파괴특성 변화에 대해 검토하였다. 결과로서 가해진 압력이 증가함에 따라 압축파괴인성은 증가함을 알수 있었다. 구체적으로 압력이 대기압에서 300 MPa으로 증가할 때 압축파괴인성 값은 약 44% 증가하였다.

  • PDF

A new geomechanical approach to investigate the role of in-situ stresses and pore pressure on hydraulic fracture pressure profile in vertical and horizontal oil wells

  • Saberhosseini, Seyed Erfan;Keshavarzi, Reza;Ahangari, Kaveh
    • Geomechanics and Engineering
    • /
    • 제7권3호
    • /
    • pp.233-246
    • /
    • 2014
  • Estimation of fracture initiation pressure is one of the most difficult technical challenges in hydraulic fracturing treatment of vertical or horizontal oil wells. In this study, the influence of in-situ stresses and pore pressure values on fracture initiation pressure and its profile in vertical and horizontal oil wells in a normal stress regime have been investigated. Cohesive elements with traction-separation law (XFEM-based cohesive law) are used for simulating the fracturing process in a fluid-solid coupling finite element model. The maximum nominal stress criterion is selected for initiation of damage in the cohesive elements. The stress intensity factors are verified for both XFEM-based cohesive law and analytical solution to show the validation of the cohesive law in fracture modeling where the compared results are in a very good agreement with less than 1% error. The results showed that, generally by increasing the difference between the maximum and minimum horizontal stress, the fracture pressure and its profile has been strongly changed in the vertical wells. Also, it's been clearly observed that in a horizontal well drilled in the direction of minimum horizontal stress, the values of fracture pressure have been significantly affected by the difference between overburden pressure and maximum horizontal stress. Additionally, increasing pore pressure from under-pressure regime to over-pressure state has made a considerable fall on fracture pressure in both vertical and horizontal oil wells.

해저환경에 따른 두께가 두꺼운 탄소섬유/에폭시 복합재의 파괴인성에 대한 실험적 연구 (An experimental study on the fracture toughness of thick carbon/epoxy composite in the deep-sea environment)

  • 하성록;이경엽
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.1037-1041
    • /
    • 2005
  • It is well-known that the corrosive behavior of PMC (polymer matrix composite) structure is much better than the metal structure in the marine environment. The understanding of fracture behavior of PMC in the deep-sea environment is essential to expand its use in the marine industry. For a present study, fracture tests have been performed under four different pressure levels such as 0.1 MPa, 100 MPa, 200 MPa, and 270 MPa using the seawater-absorbed carbon/epoxy composite samples. Fracture toughness was determined from the work factor approach as a function of hydrostatic pressure. It was found that fracture behavior was a linear elastic for all pressure levels. The fracture toughness increased with increasing pressure.

  • PDF

고압하에서의 적층복합재의 기계적 거동에 대한 실험적 고찰 (Experimental Investigation on the Mechanial Behavior of Graphite/Epoxy Composites Under Hydrostatic Pressure)

  • 이경업;배국동
    • 대한기계학회논문집A
    • /
    • 제20권8호
    • /
    • pp.2431-2435
    • /
    • 1996
  • In order to determine the effects of hydrostatic pressure on the mechanical behavior of graphite fiber reinforced composites, the modulus, fracture stress(maximum stress), and fracture strain of graphite/epoxy composites have been determined as a function of pressure. Composite specimens used in this study were 90-deg unidirectional and had a 60% fiber volume fraction. Compressive tests under five different pressure levels were conducted. The result showed the modulus measured from as initial slope of stress-strain curve increased bilinearly with pressure with a break at 200 MPa. It was also found that fracture stress and fracture strain increased in a linear fashion with pressure.

고압환경에서 탄소섬유/에폭시 복합재의 압축거동에 대한 연구-변형률 속도 영향 (Compressive Behavior of Carbon/Epoxy Composites under High Pressure Environment-Strain Rate Effect)

  • 이지훈;이경엽
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.148-153
    • /
    • 2004
  • It is well-known that the mechanical behavior of fiber-reinforced composites under hydrostatic pressure environment is different from that of atmospheric pressure environment. It is also known that the mechanical behavior of fiber-reinforced composites is affected by a strain rate. In this work, we investigated the effect of strain rate on the compressive elastic modulus, fracture stress, and fracture strain of carbon/epoxy composites under hydrostatic pressure environment. The material used in the compressive test was unidirectional carbon/epoxy composites and the hydrostatic pressures applied was 270㎫. Compressive tests were performed applying three strain rates of 0.05%/sec, 0.25%/sec, and 0.55%/sec. The results showed that the elastic modulus increased with increasing strain rate while the fracture stress was little affected by the strain rate. The results also showed that the fracture strain decreased with increasing strain rate.

직사각형 전지 케이스의 V-notch부 터짐 예측에 관한 연구 (Study on Bursting Prediction of Rectangular Battery Case with V-Notch)

  • 김상목;송우진;구태완;김정;강범수
    • 소성∙가공
    • /
    • 제18권1호
    • /
    • pp.59-66
    • /
    • 2009
  • In this study, V-notch part has been considered as one of safety components in rectangular cup used for mobile device. This kind of safety component in rectangular cup with the V-notch part, which controls adequately the increased internal pressure in the rectangular cup, plays an important role to prevent the explosion from the excessive internal pressure. The protecting mechanism on the mobile device against the explosion is that a series of fracture on the V-notch part at the critical internal pressure level occurs. Therefore, it is very crucial to estimate accurately the working pressure range of the safety device. Relationship between the working internal pressure and fracture phenomenon at V-Notch part was investigated through numerical analysis using ductile fracture criteria. Integral value, I, of the used ductile fracture criteria was calculated from effective stress and strain, and then the bursting pressure of the V-notch part was extracted. Comparisons between the estimated and experimental results show that this systematic approach to predict bursting pressure using the ductile fracture criteria gives fairly good agreements.

원자로압력용기 노즐부 구속효과를 고려한 파괴인성 평가 (Evaluation of Fracture Toughness considering Constraint Effect of Reactor Pressure Vessel Nozzle)

  • 권형도;이연주;김동학;이도환
    • 한국압력기기공학회 논문집
    • /
    • 제15권1호
    • /
    • pp.71-76
    • /
    • 2019
  • Actual stress distributions in the nozzle of a pressure vessel may not be in plane strain condition, implying that the crack-tip constraint condition may be relaxed in the nozzle. In this paper, a methodology for evaluating the fracture toughness of the ASME Code is presented considering the relaxation of the constraint effect in the nozzle of the reactor pressure vessel. The crack-tip constraint effect is quantified by the T-stress. The equation, which represent the relation between the fracture toughness in the lower constraint condition and the plane strain fracture toughness, is derived using the T-stress. This equation is similar to the method for evaluating the fracture toughness of the Master Curve for low constraint conditions. As a result of evaluating the fracture toughness considering the constraint effect in the reactor inlet, outlet and direct injection nozzles using the proposed equation, it was confirmed that the fracture toughness in the nozzles is higher than the plane strain fracture toughness. Applying the proposed evaluation methodology, it is possible to reflect the relaxation of the constraint effect in the nozzles of the reactor pressure vessel, therefore, the safe operation area on the pressure-temperature limit curve can be prevented from being excessively limited.

압력용기강의 파괴저항곡선의 파괴변형률에 관한 연구 (A study on the Relations Between Fracture Strain and Fracture Resistance Curve of nuclear Pressure Vessel Steel)

  • 임만배
    • 한국해양공학회지
    • /
    • 제14권1호
    • /
    • pp.44-51
    • /
    • 2000
  • Safety and integrity are required for reactor pressure vessels because they are operated in high temperature. There are single specimen method multiple specimen method and load ratio analysis method which used as evaluation of safety and integrity for reactor pressure vessels. In this study the fracture resistance curve(J-R curve) elastic-plastic fracture toughness($J_{IC}$) and material tearing modulus ($T_{mat}$) of SA 508 class 3 alloy steel used as reactor pressure vessel steel are measured and evaluated at room temperature 20$0^{\circ}C$ and 30$0^{\circ}C$ according to unloading compliance method and load ration analysis method. And then the comparison with experimental $J_{IC}$ and theoretical$J_{IC}$ by local fracture strain is managed.

  • PDF