• Title/Summary/Keyword: pressure depth

Search Result 1,378, Processing Time 0.031 seconds

Evaluation of dynamic earth pressure acting on pile foundation in liquefiable sand deposit by shaking table tests

  • Mintaek Yoo;Seongwon Hong
    • Geomechanics and Engineering
    • /
    • v.38 no.5
    • /
    • pp.487-495
    • /
    • 2024
  • In this study, a series of shaking table model tests were performed to evaluate the dynamic earth pressure acting on pile foundation during liquefaction. The dynamic earth pressure acting on piles were evaluated with depth and pile diameters comparing with excess pore water pressure, it means that the kinematic load effect plays a substantial role in dynamic pile behavior during liquefaction. The dynamic earth pressure acting on pile foundations with mass exhibited significant similarity to those without upper mass. Analyzing the non-fluctuating and fluctuating components of both excess pore water pressure and dynamic earth pressure revealed that the non-fluctuating component has a dominant influence. In case of non-fluctuating component, dynamic earth pressure is larger than excess porewater pressure at same depth, and the difference increased with depth and pile diameter. However, in the case of the fluctuating component, the earth pressure tended to be smaller than the excess pore water pressure as the depth increased. Based on the results of a series of studies, it can be concluded that the dynamic earth pressure acting on the pile foundation during liquefaction is applied up to 1.5 times the excess pore water pressure for the non-fluctuating component and 0.75 times the excess pore water pressure for the fluctuating component.

The Effects of the Arc Pressure Variation on the Penetration by the filler Wire Feed Rate in Pulsed TIG Welding (펄스 TIG용접에서 필러 와이어 송급속도에 따른 아크압력 변동이 용입에 미치는 영향)

  • 조상명;김진우
    • Journal of Welding and Joining
    • /
    • v.22 no.1
    • /
    • pp.71-76
    • /
    • 2004
  • In the standpoint of the arc pressure, the effects of the filler wire feed rate on the penetration was investigated in this study. The pure Ar gas was used as a shield gas and the parameters investigated were the welding current and the filler wire feed rate. By making the experiment on the arc pressure, we could know that the arc pressure was fluctuated as the depth-into-arc of the tungsten rod. Instead of the filler wire, the tungsten rod was supplied into the molten pool to make this experiment. Because the filler wire melted in arc and then we couldn't measure the arc pressure. So, the tungsten rod - the highest melting point - was used. According to the depth-into-arc of the tungsten rod, the arc pressure could be measured by using the manometer. It was proved that the arc pressure got higher as the wire feed rate was slow. It is reported the arc pressure is proportion to welding voltage and the square of welding current. But, in the filler wire TIG welding, we could blow that arc pressure was fluctuated as the depth-into-arc of filler wire was changed. We could measure the arc pressure by the variation of the filler wire feed rate and could verify that it affected bead shape and penetration.

Characterization of depth filter media for gas turbine intake air cleaning

  • Park, Young Ok;Hasolli, Naim;Choi, Ho Kyung;Rhee, Young Woo
    • Particle and aerosol research
    • /
    • v.5 no.4
    • /
    • pp.159-170
    • /
    • 2009
  • A depth filter medium was newly designed in order to achieve high collection of dust and low pressure drop in this work. Multilayer depth filter media consist of an upstream layer of highly porous structure which allows particles to pass through and to follow by one or more downstream layers to hold the particles inside the media. For each filter media, flat sheet and pleated module were made of newly developed depth filter media and filter media of commercial products. Commercial depth filter cartridge for gas turbine air intake cleaning were used as reference for filtration area and pleat geometry of pleated modules. This work attempts to evaluate and compare the newly developed depth filter medium and two commercial filter media in terms of filtration parameters such as air permeability, initial pressure drop, particle retention and pressure drop variation with dust loading. According to the close examination the newly developed depth filter showed better performance compared to the commercial depth filter media.

  • PDF

Earth Pressure on a Rigid wall due to Loads Condition and Distance (상재하중의 크기와 이격거리에 따른 강성벽체의 토압분포)

  • Oh, Bun-Jin;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.12
    • /
    • pp.51-60
    • /
    • 2010
  • Earth pressure due to gravity generally increases linearly with the depth, but the distribution of earth pressure due to surface load depends on the loading condition, the ground condition, and the boundary condition. In this study, the earth pressure on a rigid wall due to the vertical surface load was measured in experiments. Rigid wall was built in the model test box, and it was filled with homogeneous sandy ground (width 30 cm, height 88 cm, length 110 cm). Rigid wall was composed of 8 segments, which were tested on the two load cells. In the tests, we observed the distribution of the earth pressure on the rigid wall depending on the vertical surface load and it's location. According to the test results, the lateral earth pressure due to the vertical surface load showed its maximum value at a constant depth and decreased with the depth, to the negligible value at the critical depth. The critical depth and the depth at which lateral earth pressure reaches its maximum were not decided by the magnitude of the vertical surface load. They were dependant on the distance from the rigid wall.

Fabrication of a multi-functional one-chip sensor for detecting water depth, temperature, and conductivity (수위, 온도, 전도도 측정을 위한 다기능 One-Chip 센서의 제조)

  • Song, Nak-Chun;Cho, Yong-Soo;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • The multi-functional one-chip sensor has been fabricated to reduce output variation under various water environment. There were a temperature sensor, a piezoresistive type pressure sensor, and a electrode type conductivity sensor in the fabricated one-chip sensor. This sensor was measured water depth in the range of $0{\sim}180cm$, temperature in the range of $0{\sim}50^{\circ}C$, and salinity in the range of 0 $0wt%{\sim}5wt%$, respectively. Since the change of water depth in solution environment depends on various factors such as salinity, latitude, temperature, and atmospheric pressure, the water depth sensor is needed to be compensated. We tried to compensate the salinity and temperature dependence for the pressure in water by using lookup-table method.

The Effect of Water Depth and Exercise Speed on Physiological Responses Immediately After Aquatic Squat Exercise

  • Gyu-sun, Moon
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.185-193
    • /
    • 2024
  • This study aimed to investigate the immediate physiological responses, including heart rate, blood pressure, and rate pressure product (RPP), following squat exercises performed at three water depths (ground, knee depth, waist depth) and two speed conditions (60bpm speed, Max speed). The participants consisted of 10 men in their 20s with over 6 months of resistance exercise experience. For the 60bpm speed squats, participants performed 30 repetitions in 1 minute at a rate of 2 seconds per repetition, while for Max speed squats, they performed at Max speed without a set limit on the number of repetitions for 1 minute. All experiments were conducted with a random assignment. The study results showed that immediately after the aquatic squat exercise, the average heart rate, blood pressure, and cardiac load were higher in the order of knee depth, ground level, and waist depth at both 60bpm speed and Max Speed. At 60bpm speed, the heart rate was higher in the order of ground level, knee depth, and waist depth. Overall, exercise in an aquatic environment was considered to impose relatively lower physical burden compared to land-based exercise. Therefore, it is suggested that depending on individual fitness levels and exercise goals, appropriately combining aquatic exercise, which imposes lower immediate physiological burden, and land-based exercise may lead to safer and more effective exercise methods.

Real-Time Pressure-Measuring System for Evaluating the Depth of Pulse (맥진 깊이 판단을 위한 실시간 압력 측정기)

  • Cho, Jong Ho;Kim, Dae Bok;Kim, Gi Wang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.3
    • /
    • pp.313-317
    • /
    • 2013
  • In order to standardize the pressure/depth against radial artery, the externally-applied-pressure measuring system was fabricated and evaluated. Based on the resistance-variable characteristic of the very thin($10{\mu}m$) film conductive tape along the pressure of a tip of a examiner's hand, this system was designed. The change of the pressure was processed through voltage regulator and Matlab S/W, then showed on computer monitor. The signal output through voltage regulator, and Matlab S/W was evaluated on various conditions. The evaluation was executed on these cases; an examiner slowly increases and decreases the pressure, rapidly increases and decreases the pressure, sequentially increases and decreases the pressure, sustains the pressure, micro-changes the pressure. As a pulse examiner varies the pressure on the radial artery of the examinee, the system's real-time output consistently varies according to the pressure. From the results, it is concluded that this system consistently shows the pressure of the tip of a examiner's hand in real time without interrupting the evaluation of the radial artery pulse. Therefore this system is expected to standardize the value of the pressure/depth externally applied by an examiner.

Effect of pressure and temperature on bulk micro defect and denuded zone in nitrogen ambient furnace

  • Choi, Young-Kyu;Jeong, Se-Young;Sim, Bok-Cheol
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.3
    • /
    • pp.121-125
    • /
    • 2016
  • The effect of temperature and pressure in the nitrogen ambient furnace on bulk micro defect (BMD) and denuded zone (Dz) is experimentally investigated. It is found that as pressure increases, Dz depth increases with a small decrease of BMD density in the range of temperature, $100{\sim}300^{\circ}C$. BMD density with hot isostatic pressure treatment (HIP) at temperature of $850^{\circ}C$ is higher than that without HIP while Dz depth is lower due to much higher BMD density. As the pressure increases, BMD density is increased and saturated to a critical value, and Dz depth increases even if BMD density is saturated. The concentration of nitrogen increases near the surface with increasing pressure, and the peak of the concentration moves closer to the surface. The nitrogen is gathered near the surface, and does not become in-diffusion to the bulk of the wafer. The silicon nitride layer near the surface prevents to inject the additional nitrogen into the bulk of the wafer across the layer. The nitrogen does not affect the formation of BMD. On the other hand, the oxygen is moved into the bulk of the wafer by increasing pressure. Dz depth from the surface is extended into the bulk because the nuclei of BMD move into the bulk of the wafer.

Analysis of permeability in rock fracture with effective stress at deep depth

  • Lee, Hangbok;Oh, Tae-Min;Park, Chan
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.375-384
    • /
    • 2020
  • In this study, the application of conventional cubic law to a deep depth condition was experimentally evaluated. Moreover, a modified equation for estimating the rock permeability at a deep depth was suggested using precise hydraulic tests and an effect analysis according to the vertical stress, pore water pressure and fracture roughness. The experimental apparatus which enabled the generation of high pore water pressure (< 10 MPa) and vertical stress (< 20 MPa) was manufactured, and the surface roughness of a cylindrical rock sample was quantitatively analyzed by means of 3D (three-dimensional) laser scanning. Experimental data of the injected pore water pressure and outflow rate obtained through the hydraulic test were applied to the cubic law equation, which was used to estimate the permeability of rock fracture. The rock permeability was estimated under various pressure (vertical stress and pore water pressure) and geometry (roughness) conditions. Finally, an empirical formula was proposed by considering nonlinear flow behavior; the formula can be applied to evaluations of changes of rock permeability levels in deep underground facility such as nuclear waste disposal repository with high vertical stress and pore water pressure levels.

Resistance to Air Flow through Fruits and Vegetables in Bulk (산물퇴적 청과물의 송풍저항 특성)

  • 윤홍선;조영길;박판규;박경규
    • Journal of Biosystems Engineering
    • /
    • v.20 no.4
    • /
    • pp.333-342
    • /
    • 1995
  • The resistance to air flow through fruits and vegetables in bulk was an important consideration in the design of the pressure cooling system. The amount of resistance to air flow through produce in bulk normally depended upon air flow rate, stacking depth, porosity, stacking patterns and shape and site of product. But, there was not enough information relating the effects of those factors on air flow resistance. The objectives of this study were to investigate the effect of stacking depth, stacking patterns, porosity and airflow rate on airflow resistance and to develop a statistical model to predict static pressure drop across the produce bed as a function of air flow rate, stacking depth, bed porosity, and product size. Mandarins and tomatoes were used in the experiment. The airflow rate were in the range of 0.1~1.0 ㎥/s.$m^2$, the porosity were in the range of 0.25~0.45, the depth were in the range of 0.3~0.9m and the equivalent diameters were 5.3cm and 6.3cm for mandarins, and 6.5cm and 8.5cm for tomatoes. Three methods of stacking arrangement were used i.e. cubic, square staggered, and staggered stacking arrangement. The results were summarized as follows. 1. The pressure drops across produce bed increased in proportion to stacking depth and superficial air velocity and decreased in proportion to porosity. 2. The increasing rates of pressure drop according to stacking patterns with the increase of superficial air velocity were different one another. The staggered stacking arrangement produced the highest increasing rate and the cubic stacking arrangement produced the lowest increasing rate. But it could be assumed that the stacking patterns had not influenced greatly on pressure drops if it was of equal porosity. 3. The statistical models to predict the pressure drop across produce bed as a function of superficial air velocity, stacking depth, porosity, and product diameter were developed from these experiments.

  • PDF