• Title/Summary/Keyword: pressure cell

Search Result 1,788, Processing Time 0.034 seconds

Stomach Cancer Cell Lysis in PBS with Conductivity and Osmotic-Pressure Control (용액 전도도 및 삼투압 조절된 PBS에서의 위암 세포 전기 분해)

  • Kim, Min-Soo;Lee, Kook-Nyung;Cho, Su-Hyung;Kim, Byung-Gee;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2137-2139
    • /
    • 2004
  • Cancer cell lysis at pulsed DC is realized using micromachined electrodes. In this research, quantitative analyses are performed on cell lysis results. The cell volume increasing at the pulses applied are analyzed in different medium conditions on osmotic pressure and conductivity, and the cell lysis procedures are studied in detail experimentally. Phosphate buffered saline (PBS) is used as the medium. To change the conductivity of PBS, NaCl concentration of PBS is adjusted, and inositol is used with PBS to control the effects of the osmotic pressure to cell lysis performance.

  • PDF

Pressure Distribution Simulation on Geometrical Manifolds Structure for Fabrication of a Planar-type Fuel-Cell Stack (평판형 연료전지 스택의 제조를 위한 매니폴드 형상별 압력분포 시뮬레이션)

  • Park, Se-Joon;Choi, Young-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.609-614
    • /
    • 2009
  • A fuel-cell power system among various alternative power sources has many advantages such as comparatively independable circumstances, high-efficient, and heat-recyclable, thus it is now able to be up to hundreds MWh-scaled through improving feasibility and longevity of it. During the last few decades, numerous research results has been investigated to expand interest in fuel-cell technology. This study presents pressure distribution on the geometrical manifold structures, which are U-type and Z-type, of a planar-type fuel-cell stack by simulated with computational fluid dynamics(CFD). Then, electrical performance of a 200W fuel-cell stack, which is U-type, was diagnosed after pre-conditioning operation. The stack has electrical characteristics ; 22V, 10A, 220W, and current density $200mA/cm^2$.

Design Performance Analysis of Solid Oxide Fuel Cell / Gas Turbine Hybrid Systems Considering Steam Injection (스팀분사를 고려한 SOFC/GT 하이브리드 시스템의 설계 성능 비교 분석)

  • Park, Sung-Ku;Kim, Tong-Seop
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3224-3229
    • /
    • 2007
  • This study aims to analyse the influence of steam injection on the performance of hybrid systems combining a solid oxide fuel cell and a gas turbine. The steam is generated by recovering heat from the exhaust gas. Two system configurations, with difference being the operating pressure of the SOFC, are examined and effects of steam injection on performances of the two systems are compared. Two representative gas turbine pressure ratios are simulated and a wide range of both the fuel cell temperature and the turbine inlet temperature is examined. Without steam injection, the pressurized system generally exhibits better system efficiency than the ambient pressure system. Steam injection increases system power capacity for all design cases. However, its effect on system efficiency varies much depending on design conditions. The pressurized system hardly takes advantage of the steam injection in terms of the system efficiency. On the other hand, steam injection contributes to the efficiency improvement of the ambient pressure system in some design conditions. A higher pressure ratio provides a better chance of efficiency increase due to steam injection.

  • PDF

The Electromotive Force and Thermodynamic Properties of the Cell at High Pressure (고압하에서의 전지의 기전력과 열역학적 성질)

  • Jee Jong-Gi;Jung Jong-Jae;Hwang Jung-Ui
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.320-328
    • /
    • 1974
  • It is unable to derive the standard emf ($E^{\circ}$) of the cell at high pressure from the conventional method. However, when the concept of the complete equilibrium constant($K{\circ})$) is available to the conventional Nernst equation, it is possible to get the standard emf of the cell at high pressure(complete Nernst equation). Moreover, the other thermodynamic properties, such as the net change of solvation number(k), the compressibility of solvent(${\beta}$), ionization constant(K), the standard free energy change(${\Delta}G^{\circ}$), the standard enthalpy change(${\Delta}H^{\circ}$) and the standard entropy change (${\Delta}S^{\circ}$) of the cell reaction at equilibrium state have been also obtained. In this experiment, the emf of the cell; 12.5 % Cd(Hg)│$CdSO_4(3.105{\times}10^{-3}M),\;Hg_2SO_4│Hg$ have bee measured at temperature from 20 to $35^{\circ}C$ and at pressures from 1 to 2500 atms. The emf of the cell increased with increasing pressure at constant temperature, and did with increasing temperature at constant pressure. The net change of solvation number(k) of the cell reaction was 41.96 at $25^{\circ}C$, and kept constant value with pressure, while, K and ${\Delta}S^{\circ}$ increased with pressure, but whereas ${\Delta}G^{\circ}$ and ${\Delta}H^{\circ}$ decreased. Since the standard emf of the cell at high pressure can be calculated from the complete Nernst equation, the theory of chemical equilibrium could be developed with at high pressure as well as at the atmosphere.

  • PDF

The Effect of Stack Clamping Pressure on the Performance of a Miniature PEMFC Stack (소형 고분자 연료전지 스택의 체결압력에 따른 성능 특성)

  • Kim, Byung-Ju;Yim, Sung-Dae;Sohn, Young-Jun;Kim, Chang-Soo;Yang, Tae-Hyun;Kim, Young-Chai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.499-504
    • /
    • 2009
  • The effect of gas diffusion layer (GDL) compression caused by different stack clamping pressures on fuel cell performance was experimentally studied in a miniature 5-cell proton exchange membrane fuel cell (PEMFC) stack. Three stacks with different GDL compressions, 15%, 35% and 50%, were prepared using SGL 10BC carbon fiber felt GDL and Gore 57 series MEA. The PEMFC stack performance and the stack stability were enhanced with increasing stack clamping pressure resulting in the best performance and stability for the stack with higher GDL compressions up to 50%. The excellent performance of the stack with high GDL compression was mainly due to the reduced contact resistance between GDL and bipolar plate in the stack, while reduced gas permeability of the excessively compressed GDL in the stack hardly affected the stack performance. The high stack clamping pressure also resulted in excessive GDL compression under the rib areas of bipolar plate and large GDL intrusion into the channels of the plate, which reduced the by-pass flow in the channels and increase gas pressure drop in the stack. It seems that these phenomena in the highly compressed stack enhance the water management in the stack and lead to the high stack stability.

Comparison between CFD analysis and experiments according to various PEMFC flow-field designs (유로 형상 변화에 따른 CFD 해석 결과와 PEM 연료전지 성능 비교)

  • Lee, Kang-In;Park, Min-Soo;Lee, Se-Won;Chu, Chong-Nam
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.572-575
    • /
    • 2008
  • Flow-field design has much influence over the performance of proton exchange membrane fuel cell (PEMFC) because it affects the pressure magnitude and distribution of the reactant gases. To obtain the pressure magnitude and distribution of reactant gases in four kinds of flow-field designs without additional measurement equipment, computational fluid dynamics (CFD) analysis was performed. After the CFD analysis, the performance values of PEMFC according to the flow-field configurations were measured via a single cell test. As expected, the pressure differences due to different flow-field configurations were related to the PEMFC performance because the actual performance results showed the same tendency as the results of the CFD analysis. A large pressure drop resulted in high PEMFC performance. So, the single serpentine configuration gave the highest performance. On the other hand, the parallel flow-field configuration gave the lowest performance because the pressure difference between inlet and outlet was the lowest.

  • PDF

Comparison of Immuno-Modulatory Regulatory Activities of Rubus coreanus Miquel by Ultra High Pressure Extracts Process (초고압 공정에 의한 복분자의 면역조절효능 비교)

  • Kwon, Min-Chul;Kim, Cheol-Hee;Na, Chun-Soo;Kwak, Hyeong-Geun;Kim, Jin-Chul;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.6
    • /
    • pp.398-404
    • /
    • 2007
  • This study was performed to investigate the enhancement of anticancer activities and immuno modulatary activities from R. coreanus. by ultra high pressure extracts process. The cytotoxicity on human kidney cell (HEK293) was showed below 19.5% in adding 1.0 $mg/m{\ell}$ concentration. The anticancer activity was increased over 10% by high pressure processing in AGS and A549 cells. The immune cell growth using human immune B and T cells was improved by the high pressure extracts of Rubus coreanus in adding 1.0 $mg/m{\ell}$ concentration. The secretion of two kinds of cytokine, the IL-6 and $TNF-{\alpha}$ from human immune B and T cells were also enhanced in adding extracts by high pressure process of R. coreanus. The ultra high pressure extraction technique showed high efficiency in extracting of bioactive compound. The ultra high pressure technique could be used combined with other technique to improve the extracting rate and extracting efficiency.

Experimental Study on the Behavior of Stall Cell in an Axial Flow Fan (축류송풍기의 실속셀 거동에 관한 실험적 연구)

  • Shin You Hwan;Kim Kwang Ho;Kang Chang Sik
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.643-646
    • /
    • 2002
  • Experimental study was conducted to reveal the flow mechanism under rotating stall in an axial flow fan. For this study unsteady pressure was measured using high frequency pressure transducers mounted on the casing wall of rotor passage and total pressure fields were measured at the rotor upstream and downstream. The measured pressure signal was analyzed by Wavelet Transform and Double Phase Locked Averaging Technique. From the result of unsteady pressure field of the casing wall, one period of rotating stall was divided into three zones and the flow characteristics on each zone were described in detail. The pressure field was also analyzed in terms of the pressure distribution along pressure side and suction side of blade tip. From the result of total pressure fields at inlet and outlet of the rotor, the useful information on the characteristics of the stall cell in radial direction was provided.

  • PDF

Characteristics of the Concentration Process of Lactobacillus Cell Using a Ceramic Membrane (세라믹막을 이용한 Lactobacillus cell의 농축 공정의 특성)

  • Lee Yong Taek;Song Min-Ho
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.192-200
    • /
    • 2004
  • It is an anaerobic germ that Lactobacillus cell concentrated using ceramic membrane has high stability and long lifetime as compared with polymeric membrane. The effects of operating pressure, temperature, crossflow velocity on cell harvesting have been studied. Also the variation of flux and transmembrane pressure (TMP) with increasing concentration ratio and the change of TMP at constant concentration ratio (volumetric concentration factor: VCF) regarding the optimization have been examined. It showed that the permeate flux increased gradually with the increasing of transmembrane pressure, crossflow velocity, and volumetric concentration factor. The higher initial flux was due to the reduction of viscosity at elevated temperature. However, as operating time progressed, the effect of temperature was negligible since the effect of viscosity became minor. As a result, that operate in a constant concentration ratio, decreased degree could know that become slowly although the flux decreases according as operating time progressed. The flux is a very stable in the condition of constant VCF range. The yield of Latobaciilus (PS 406) which was cultivated at $37^{\circ}C$ was concentrated about 4.9{\times}10^9$ after operation.

Prediction of Fuel Cell Performance and Water Content in the Membrane of a Proton Exchange Membrane Fuel Cell (고분자 전해질 연료전지의 전해질 막내의 함수율과 성능 예측)

  • Yang, Jang-Sik;Choi, Gyung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.151-159
    • /
    • 2006
  • A one-dimensional numerical analysis is carried out to investigate the effects of inlet gas humidities, inlet gas pressures, and thicknesses of membrane on the performance of a proton exchange membrane fuel cell. It is found that the relative humidity of inlet gases at anode and cathode sides has a significant effect on the fuel cell performance. Especially, the desirable fuel cell performance occurs at low relative humidity of the cathode side and at high humidity of the anode side. In addition, an increase in the pressure ranging from 1 atm to 4 atm at the cathode side results in a significant improvement in the fuel cell performance due to the convection effect by a pressure gradient toward the anode side, and with decreasing the thickness of membrane, the fuel cell performance is enhanced reasonably.