• Title/Summary/Keyword: press temperature

Search Result 1,762, Processing Time 0.024 seconds

A Study on the Press Belt Motion in the Fusing Press M/C (심지융착기의 압착벨트 운동에 대한 연구)

  • Huh You;Ahn Seong-Gi;Jang Seung-Ho
    • Textile Coloration and Finishing
    • /
    • v.17 no.5 s.84
    • /
    • pp.53-60
    • /
    • 2005
  • Fusing press m/c is used for heating and pressing the specimens that are fed into between the two moving belts. Therefore the belt movement, belt temperature, and the pressure between belts must be kept constant. Especially, the belts should move in a limited operation range. When the belts run far out of the operation point, the machine has to be stopped, which results in a product defect because the fusing conditions, e.g., temperature and pressure, change during the transient process time period. It is important to avoid the belt stopping by maintaining the belt movement in a limited range. This study reports about the movement of the endless fusing belt in a long-span roller fusing m/c. The belt position changes as the 1st-order system does; if the roller axes are slanting each other with a certain angle, the belt running around the two rolls shows a dynamic behavior with the time that deviates fastly at the beginning from the initial condion and slows down. Then it reaches at a final position. The skewer the axes, the greater the position change. The inital change rate of the belt becomes large as the skewness of the axes between the two rollers increases.

Creep Behavior of Press Joined Molding GMT-Sheet (프레스 접합성형 GMT-Sheet의 크리프 특성)

  • Choi, Yu-Seong;Kim, Hyuk;Kang, Myoung-Goo;Lee, Dong-Gi;Han, Gil-Young;Kim, E-Gon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.171-177
    • /
    • 2000
  • It is essential to understand the creep behavior, which shows how long the characteristics of material maintains because press joined molding GMT-Sheet for recycle is usually used in the severe environment. In this study, we predict joining strength of GMT-Sheet for recycle, when lap length was changed. and we will investigate how compression ratio have an effect on creep behavior in press joined molding. The result of experiment of forming condition concerned with joining problem of GMT-Sheet is as followings joining efficiency. of GMT-Sheet, increases as lap joint length I, increases. Increase of compression ratio causes decrease o f joining efficiency after of GMT-Sheet joining. As the result of creep test, GMT-Sheet is easily damaged in high temperature range, because it is sensitive to the temperature

  • PDF

High-Temperature Degradation of Hot-Pressed $t-ZrO_2$ Co-doped with $Y_2O_3$ and $Nb_2O_5$ (Hot-press법으로 제조된 $Y_2O_3$$Nb_2O_5$가 첨가된 정방정 ZrO2의 고온열화)

  • 이득용;김대준;조경식
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.915-920
    • /
    • 1997
  • Tetragonal ZrO2 polycrystal (TZP), consisted of 90.24 mol% ZrO2-5.31 mol% Y2O3-4.45 mol% Nb2O5, were prepared using hot-press and mechanical properties and high-temperature degradation were investigated. The specimen, hot-pressed for 1 h at 140$0^{\circ}C$ in Ar atmosphere, exhibited flexural strength of 1010 MPa and fracture toughness of 7.5 MPam1/2 and experienced no low-temperature degradation below 40$0^{\circ}C$. However, as aged for 100h at temperatures higher than 40$0^{\circ}C$, TZP was suffered by high-temperature degradation due to an extensive cavitation caused by the oxidation of carbon. XPS observation revealed that the carbon incorporated in TZPs during hot-pressing exists as either an ether-type CO or a carbonyl-type C=O. Despite of the high-temperature degradation of t-ZrO2 co-doped with Y2O3 and Nb2O5, its flexural strength and fracture toughness were superior to those of the commercial 3 mol% Y2O3-TZP hot-pressed under the identical condition as determined before and after the aging treatments.

  • PDF

The Prediction of Interfacial Heat Transfer Coefficient According to Contact Time and Pressure in Forging and Casting Die Materials for the Hot Press Forming (핫프레스포밍용 주조, 단조 금형에 대한 시간과 압력에 따른 대류열전달계수의 예측)

  • Kim, N.H.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.378-386
    • /
    • 2010
  • Nowadays there has been great interest in using heat treated cast material for press dies due to several advantages like reduction in die production costs. However, in hot press forming processes H13 forged tool steel is mostly used. Cooling performance of dies in hot press forming processes is considered as an important factor of study and also the IHTC parameter between cast material die and sheet metal should be considered as an essential. In the present study, the IHTC was calculated for the sheet metal in the hot press forming process with cast and forged material dies. The temperature measurements were performed for the sheet metal, casting and forged material dies by applying various contact pressure in hot press forming. IHTC was calculated and studied by adopting the inverse heat convection method in DEFORM-2D. Each IHTC was considered as a function of contact time and contact pressure. The experimental data were compared with calculated data obtained from the proposed equation and references.

Decaying temperature and dynamic response of a thermoelastic nanobeam to a moving load

  • Zenkour, Ashraf M.;Abouelregal, Ahmed E.
    • Advances in Computational Design
    • /
    • v.3 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • The decaying temperature and dynamic response of a thermoelastic nanobeam subjected to a moving load has been investigated in the context of generalized theory of nonlocal thermoelasticity. The transformed distributions of deflection, temperature, axial displacement and bending moment are obtained by using Laplace transformation. By applying a numerical inversion method, the results of these fields are then inverted and obtained in the physical domain. Also, for a particular two models, numerical results are discussed and presented graphically. Some specific and special results are derived from the current study.

A novel model of a nonlocal porous thermoelastic solid with temperature-dependent properties using an eigenvalue approach

  • Samia M. Said
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.137-144
    • /
    • 2023
  • The current article studied wave propagation in a nonlocal porous thermoelastic half-space with temperature-dependent properties. The problem is solved in the context of the Green-Lindsay theory (G-L) and the Lord- Shulman theory (L-S) based on thermoelasticity with memory-dependent derivatives. The governing equations of the porous thermoelastic solid are solved using normal mode analysis with an eigenvalue approach. In order to illustrate the analytical developments, the numerical solution is carried out, and the effect of local parameter and temperature-dependent properties on the physical fields are presented graphically.

Temperature-dependent multi-phase-lags theory on a magneto-thermoelastic medium with microtemperatures

  • Samia M. Said
    • Steel and Composite Structures
    • /
    • v.50 no.5
    • /
    • pp.489-497
    • /
    • 2024
  • A temperature-dependent generalized thermoelasticity is constructed in the context of a new consideration of the multi-phase-lags model. The theory is then adopted to study wave propagation in anisotropic homogenous generalized magneto-thermoelastic medium under the influence of gravity whose boundary is subjected to thermal and mechanical loading. The basic equations of the problem are solved by using normal mode analysis. The numerical quantities of physical interest are obtained and depicted graphically. Some comparisons of the results are shown in figures to study the effects of the magnetic field, temperature discrepancy, and the gravity field.

Determination of Heat Treatment Condition for Hot Press Formed Automotive Flex Plate (자동차용 플렉스 플레이트 제조를 위한 핫프레스 포밍 열처리 조건 최적화)

  • Park, I.H.;Lee, M.G.;Kim, S.J.;Jeong, W.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.186-189
    • /
    • 2008
  • The flex plate, an automotive part which mounts to the automotive engine to transfer torque to transmission, should have considerable hardness and shape accuracy. As a way to produce the flex plate, the hot press forming technology which takes advantages of high formability at elevated temperature, enhanced strength and shape stability was introduced. Therefore, as one of major process parameters the heat treatment condition should be determined to obtain appropriate hardness in the range of manufacturer's specifications. In this study, two heat treatments, austempering and quenching and tempering (QT), were compared as feasible conditions fur the hot press forming of high-carbon tool steel and the hardness and toughness after heat treatments were evaluated. The study showed that both heat treatments resulted in improved hardness but only quenching and tempering showed practicable range of toughness.

  • PDF

Try out and Analytical Researches on Quenching Process of Coupled Torsion Beam Axle using Boron Steel Tube (보론강을 이용한 CTBA의 후열처리 공정 실험 및 해석)

  • Yoon, S.J.;Park, J.K.;Kim, Y.S.;Suh, C.H.;Lee, K.H.;Kim, R.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.181-184
    • /
    • 2009
  • The hot press farming process, which is the press hardening of steel parts using cold dies, can utilize both ease of shaping and high strength due to the hardening effect of rapid quenching during the pressing. In this study, a thermo-elastoplastic analysis of the hot press forming process using the finite element method was performed in order to investigate the deformation behavior and temperature history during the process and the mechanical properties of the pressed parts.

  • PDF

Characterization of Mechanical Properties of Boron Steel Sheet in Hot Bending Process with Various Parameters

  • Yang, Li;Kang, Chung-Gil
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.375-378
    • /
    • 2009
  • Hot press forming is a new forming process which also names as hot stamping. It can greatly enhance the formability of forming parts. This paper researches the formability of boron steel sheet in hot bending process which is a kind of hot press forming. In the text, the influence of hot press forming processing parameters, such as the heating temperature, blank holding force, punch speed and punch and die radius, on the mechanics properties and microstructure of the hot bending parts was analyzed by tension test and the metallographic observation on the parts with various processing parameters. The relationship between blank holding force and punch load was also presented.

  • PDF