• 제목/요약/키워드: press drying

검색결과 129건 처리시간 0.024초

Experimental investigation on loading collapse curve of unsaturated soils under wetting and drying processes

  • Uchaipichat, Anuchit
    • Geomechanics and Engineering
    • /
    • 제2권3호
    • /
    • pp.203-211
    • /
    • 2010
  • An experimental program of isotropic loading tests on a compacted kaolin using a conventional triaxial equipment modified for testing unsaturated soils was perform to investigate a loading collapse curve of unsaturated soils along wetting and drying paths. The test data are presented in terms of effective stress on a range of constant suction. The suction hardening behavior was observed for both wetted and dried samples. With the use of an appropriate effective stress parameter, the unique relationship for loading collapse curve for wetting and drying processes was obtained.

제2인산(第2燐酸)암모늄 처리합판(處理合板)의 약제흡수(藥劑吸收) 및 열판건조(熱板乾燥)에 관(關)한 연구(硏究) (Studies on the Press Drying and the Chemical Absorption of the Plywood Treated with Diammonium Phosphate)

  • 김종만
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권4호
    • /
    • pp.39-45
    • /
    • 1995
  • The plywoods commonly used as decorative interior materials for the construction are inflammable and so it is a causative factor for making fire accidents, resulting in the destruction of human life and personal properties. Indeed, it is, therefore, required to produce fire-retardant plywoods. In this study, a special grade of defect-free, Kapur plywood was used. Specimens were cut into 3- by 20cm dimensions from 120- by 240- by 0.33-cm panels(thin panel) or 120- by 240- by 0.5-cm panels(thick panel). Some specimens were treated with diammonium phosphate(DAP), but some were not treated with diammonium phosphate to use as control panels. Chemical absorption, drying curves, drying rates and dynamic Young's modulus were investigated. The results were summaries as follows; 1. The specimens were soaked into 19% diammonium phosphate solution by a full cell pressure process and the diammonium phosphate retained in the thin and thick plywoods was 1.409kg/$(30cm)^3$, 1.487kg/$(30cm)^3$, respectively. 2. Diammonium phosphate-treated plywoods were redried with press-drying process at one of either condition dried on the platen($115^{\circ}C$) for a period of time or dried on the platen($50^{\circ}C$) for 3 hrs plus in a dry-oven($30^{\circ}C$) for 24 hrs. or dried on the platen($60^{\circ}C$) for 2 hrs plus in a dry-oven($30^{\circ}C$) for 24 hrs. The drying rate of treated thin specimens dried at $60^{\circ}C$ plus $30^{\circ}C$ and $115^{\circ}C$ only was found to be 0.04 %/min. and 8.53 %/min. Similarly, the drying rate of treated thick specimens were 0.03 %/min. and 6.77 %/min. respectively. 3. It was evident that highly-significantly different drying rate of treated plywoods was observed between plywood thicknesses and platen temperatures and the rate was increased by elevating the platen temperature up to $115^{\circ}C$. Based on the two-way variance analysis, highly significant drying rate was observed from the interaction between plywood thicknesses and platen temperatures. 4. After redrying, the specimens were weighed and reconditioned to a constant weight in a facility maintained temperature ($20^{\circ}C$) and relative humidity(65%) prior to test dynamic Young's modulus. The test revealed that the thin specimens dried at the platen temperature of $50^{\circ}C$, $60^{\circ}C$, $115^{\circ}C$ and untreated specimens showed 1.070E+09 dyne/$cm^2$, 1.156E+09 dyne/$cm^2$, 1.243E+09 dyne/$cm^2$, and 1.052E+09 dyne/$cm^2$, respectively. Likewise, the thick specimens revealed 5.647E+09 dyne/$cm^2$ 5.670E+09 dyne/$cm^2$, 6.395E+09 dyne/$cm^2$ and 5.415E+09 dyne/$cm^2$, respectively. 5. It was evident that significantly different dynamic Young's modulus was observed between the plywood thickness and the platen temperature, but not in the two-way interaction between the plywood thickness${\times}$the platen temperature.

  • PDF

The coupling effect of drying shrinkage and moisture diffusion in concrete

  • Suwito, A.;Ababneh, Ayman;Xi, Yunping;Willam, Kaspar
    • Computers and Concrete
    • /
    • 제3권2_3호
    • /
    • pp.103-122
    • /
    • 2006
  • Drying shrinkage of concrete occurs due to the loss of moisture and thus, it is controlled by moisture diffusion process. On the other hand, the shrinkage causes cracking of concrete and affects its moisture diffusion properties. Therefore, moisture diffusion and drying shrinkage are two coupled processes and their interactive effect is important for the durability of concrete structures. In this paper, the two material parameters in the moisture diffusion equation, i.e., the moisture capacity and humidity diffusivity, are modified by two different methods to include the effect of drying shrinkage on the moisture diffusion. The effect of drying shrinkage on the humidity diffusivity is introduced by the scalar damage parameter. The effect of drying shrinkage on the moisture capacity is evaluated by an analytical model based on non-equilibrium thermodynamics and minimum potential energy principle for a two-phase composite. The mechanical part of drying shrinkage is modeled as an elastoplastic damage problem. The coupled problem of moisture diffusion and drying shrinkage is solved using a finite element method. The present model can predict that the drying shrinkage accelerates the moisture diffusion in concrete, and in turn, the accelerated drying process increases the shrinkage strain. The coupling effects are demonstrated by a numerical example.

Hydro-mechanical analysis of non-uniform shrinkage development and its effects on steel-concrete composite slabs

  • Al-Deen, Safat
    • Steel and Composite Structures
    • /
    • 제26권3호
    • /
    • pp.303-314
    • /
    • 2018
  • Drying shrinkage in concrete caused by drying and the associated decrease in moisture content is one of the most important factors influencing the long-term deflection of steel-concrete composite slabs. The presence of profiled steel decking at the bottom of the composite slab causes non-uniform drying from top and bottom of the slab resulting non-uniform drying shrinkage. In this paper, a hydro-mechanical analysis method is proposed to simulate the development of non-uniform shrinkage through the depth of the composite slab. It also demonstrates how this proposed analysis method can be used in conjunction with previously presented structural analysis model to calculate the effects of non-uniform shrinkage on the long-term deflection of the slab. The method uses concrete moisture diffusion model to simulate the non-uniform drying of composite slab. Then mechanical models are used to calculate resulting shrinkage strain from non-uniform drying and its effect on the long-term behaviour of the composite slabs. The performance of the proposed analysis method is validated against experimental data.

Durability of CFRP strengthened RC beams under wetting and drying cycles of magnesium sulfate attack

  • Rahmani, Hamid;Alipour, Soha;Mansoorkhani, Ali Alipour
    • Advances in concrete construction
    • /
    • 제8권1호
    • /
    • pp.39-45
    • /
    • 2019
  • Durability of strengthened reinforced concrete (RC) beams with CFRP sheets under wetting and drying cycles of magnesium sulfate attack is investigated in this research. Accordingly, 18 RC beams were designed and made where 10 of them were strengthened by CFRP sheets at their tension side. Magnesium sulfate attack and wetting and drying cycles with water and magnesium sulfate solution were considered as exposure conditions. Finally, flexural performance of the beams was measured before and after 5 months of exposure. Results indicated that the bending capacity of the strengthened RC beams was reduced about 10% after 5 months of immersion in the magnesium sulfate solution. Wetting and drying cycles of magnesium sulfate solution reduced the bending capacity of the strengthened RC beams about 7%. Also, flexural capacity reduction of the strengthened RC beams in water and under wetting and drying cycles of water was negligible.

An apt material model for drying shrinkage and specific creep of HPC using artificial neural network

  • Gedam, Banti A.;Bhandari, N.M.;Upadhyay, Akhil
    • Structural Engineering and Mechanics
    • /
    • 제52권1호
    • /
    • pp.97-113
    • /
    • 2014
  • In the present work appropriate concrete material models have been proposed to predict drying shrinkage and specific creep of High-performance concrete (HPC) using Artificial Neural Network (ANN). The ANN models are trained, tested and validated using 106 different experimental measured set of data collected from different literatures. The developed models consist of 12 input parameters which include quantities of ingredients namely ordinary Portland cement, fly ash, silica fume, ground granulated blast-furnace slag, water, and other aggregate to cement ratio, volume to surface area ratio, compressive strength at age of loading, relative humidity, age of drying commencement and age of concrete. The Feed-forward backpropagation networks with Levenberg-Marquardt training function are chosen for proposed ANN models and same implemented on MATLAB platform. The results shows that the proposed ANN models are more rational as well as computationally more efficient to predict time-dependent properties of drying shrinkage and specific creep of HPC with high level accuracy.

Predicting drying shrinkage of steel reinforced concrete columns with enclosed section steels

  • Jie Wu;Xiao Wei;Xiaoqun Luo
    • Steel and Composite Structures
    • /
    • 제47권4호
    • /
    • pp.539-550
    • /
    • 2023
  • Owing to the obstruction of section steel on the moisture diffusion in concrete, the existing shrinkage prediction models overestimate the time-dependent deformation of steel reinforced concrete (SRC) columns, particularly for the SRC columns with enclosed section steels. To solve this issue, this study deals with analytical and experimental studies on the drying shrinkage for this type of column. First, an effective method for predicting the drying shrinkage of concrete based on finite element model is introduced and two crucial parameters for simulation of humidity field are determined. Then, the drying shrinkage of SRC columns with enclosed section steels is investigated and two modified parameters, which depend on the ambient relative humidity and the ratio of section steel size to column size, are introduced to the B3 model. Finally, an experiment on the shrinkage deformation of SRC columns with enclosed section steels is conducted. Comparing the predicted results with the experimental ones, it demonstrates that the modified B3 model is quite reasonable.

Numerical modeling of drying shrinkage behavior of self-compacting concrete

  • Chen, How-Ji;Liu, Te-Hung;Tang, Chao-Wei
    • Computers and Concrete
    • /
    • 제5권5호
    • /
    • pp.435-448
    • /
    • 2008
  • Self-compacting concrete (SCC), characterized by the high flowability and resistance to segregation, is due to the high amount of paste (including cement and mineral admixtures) in contrast with normal concrete (NC). However, the high amount of paste will limit the volume fractions of coarse aggregate,and reduce the tendency of coarse aggregate to suppress drying shrinkage deformations. For this reason, SCC tends to produce higher values of drying shrinkage than NC for the most part. In order to assess the drying shrinkage of SCC quantitatively for application to offshore caisson foundations, the formulas presented in the literatures (ACI 209 and CEB-FIP) are used to predict the values of drying shrinkage in SCC according to the corresponding mix proportions. Additionally, a finite element (FE) model, which assumes concrete to be a homogeneous and isotropic material and follows the actual size and environmental conditions of the caisson, is utilized to simulate stress distribution situations and deformations in the SCC caisson resulting from the drying shrinkage. The probability of cracking and the behavior of drying shrinkage of the SCC caisson are drawn from the analytic results calculated by the FE model proposed in this paper.

Feasibility of utilizing oven-drying test to estimate the durability performance of concrete

  • Chen, How-Ji;Tang, Chao-Wei;Peng, Hsien-Sheng
    • Computers and Concrete
    • /
    • 제8권4호
    • /
    • pp.389-399
    • /
    • 2011
  • The increasing concern for reinforced concrete structure durability has been justifying in many ways in the last few decades. However, there is no perfect durability test method till now. In this research an alternative method, which is based on the cumulative moisture loss percent of the concrete specimens after oven-drying, was proposed to estimate the durability performance of the concrete. Two temperatures were considered for the oven-drying tests: $100^{\circ}C$ and $200^{\circ}C$. Test results showed that oven-drying at $200^{\circ}C$ was obviously an unsuitable procedure to preserve the fragile microstructure of cement-based materials. By contrast, experimental results through oven-drying at $100^{\circ}C$ allowed estimating the moisture loss percent of cement-based materials in a more rational manner. Moreover, the magnitudes of the cumulative moisture loss percent obtained from oven-drying tests at $100^{\circ}C$ for 48 hours have good correlations with the data of other well-known methods, namely, electrical resistance test, water permeability test, and mercury intrusion porosimetry test. This investigation established that regarding the oven-drying test as one of the tests for evaluating the potential durability of concrete is considerably practicable.

상수리나무 변재(邊材)와 심재(心材)의 열판건조(熱板乾燥)에 관(關)한 연구(硏究) (Study on Press-drying of Sapwood and Heartwood of Oak)

  • 정희석;이필우
    • 한국산림과학회지
    • /
    • 제36권1호
    • /
    • pp.26-32
    • /
    • 1977
  • 저질재(低質材) 건조(乾燥)의 한 방안(方案)으로 상수리나무 판재(板材)를 열판건조(熱板乾燥)하였다. 열판건조조건(熱板乾燥條件)을 변재(邊材)와 심재(心材)의 두께 1.5cm판재(板材)를 열판온도(熱板溫度) $175^{\circ}C$, 압력(壓力) 35psi로 건조(乾燥)항, 건조시(乾燥時) 내부온도(內部溫度), 건조중(乾燥中) 함수율(含水率) 및 건조속도(乾燥速度)의 변화(變化), 건조시간(乾燥時間)과 말기함수율(末期含水率), 건조재(乾燥材)의 치수변화(變化), 건조손상(乾燥損傷) 등(等)을 조사(調査)한 결과(結果)를 요약(要約)하면 다음과 같다. 1. 판재(板材)의 내부온도(內部溫度)는 건조초기(乾燥初期)에 급격히 상승(上昇)하여 얼마동안 일정(一定)하게 유지된 다음 서서히 상승(上昇)하였다. plateau temperature는 심재(心材)가 변재(邊材)보다 높고 유지기간도 길었다. 2. 건조시간(乾燥時間)에 따라 건조속도(乾燥速度)는 감소(減少)하였고 변재(邊材)의 건조속도(乾燥速度)는 logy=-2.7925-0.0811x, (r=-0.976), 심재(心材)의 건조속도(乾燥速度)는 logy=-3.3382-0.0468x (r=-0.976)의 곡선(曲線)을 나타났다. 3. 소요(所要)되는 건조시간(乾燥時間)은 심재(心材)가 변재(邊材)보다 길었고, 변재(邊材)는 초기함수율(初期含水率) 59%에서 말기함수율(末期含水率) 2.5%까지 건조(乾燥)하였는데 45분(分), 심재(心材)는 초기함수율(初期含水率) 64%에서 말기함수율(末期含水率) 3.3%까지 55분(分)이 각각(各各) 소요(所要)되었다. 4. 건조재(乾燥材)의 평균(平均) 두께수축율(收縮率)은 20.4%, 평균(平均) 폭수축율(幅收縮率)은 2.5%이고, 평균(平均) 두께복원율(復元率)은 11.4% 평균(平均) 폭복원율(幅復元率)은 49.4%로서 두께는 폭(幅)보다 수축율(收縮率)은 컸으나 복원율(復元率)은 적었다. 5. 변재(邊材)는 내부할열(內部割裂) 등(等)의 건조손상(乾燥損傷)이 거의 없었으나 심재(心材)는 내부할대(內部割袋)이 심하게 나타났다.

  • PDF