• 제목/요약/키워드: preheating

검색결과 354건 처리시간 0.027초

A Study on the Repair Welding Methods for Cylinder Block of Diesel Engines (디젤기관 실린더 블록의 보수용접법에 관한연구)

  • 김종호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권3호
    • /
    • pp.331-337
    • /
    • 1999
  • Cracks on the cylinder block of diesel engines will often happen due to cyclic load and thermal stress. According to the Classification Societies' rules welding reparis of cylinder block made of cast irons are generally not permitted. However such welding repairs became inevitable taking enormous cost and time for their renewal into consideration. In this study repair welding methods for the clinder blocks made of gray cast irons were reviewed and the tests of their welds were carried out in order to purpose the repair welding meth-ods of packing seat and o-ring seat of cylinder block and apply them to the practice. The following conclusions are botained :1 The tensile strength of weld of cast iron more than that of base metal can be obtained by means of preheating keeping temperature above $100^{\circ}C$ between welding pass-es preventing slag inclusion peening and cramping weld metal by studs. 2. The suspected crack by a magnetic particle test due to different magnetic permeability can be identified which are not associated with a mechanical discotinuity.

  • PDF

Sludge Drying Method Using Microwave Drying Device and Heat Transfer Medium Oil (마이크로웨이브와 열전매체유를 이용한 슬러지 건조방법)

  • Kim, Yong-Ryul;Son, Min-Il
    • Journal of the Korean Applied Science and Technology
    • /
    • 제28권3호
    • /
    • pp.367-373
    • /
    • 2011
  • This research is a basic researching process for producing solid fuel that mixing paper sludge and Heat Transfer Medium Oil. Under the presence of Heat Transfer Medium Oil, paper sludge is heated and dried with home appliance microwave for comparing drying efficiency and energy efficiency of different types of drying method. As a result, Heat Transfer Medium Oil and paper mixing case of drying method, OMD, is the most efficient way to shorten the time for evaporating moisture in the paper sludge. In addition, heat transfer effect and density is increased with adding Heat Transfer Medium Oil by microwave. Future more, OMD's energy cost for evaporating whole moisture is 78% cheaper than MD. Also, OMD process shows the best energy efficiency with comparing other process. Evaporation rate of paper sludge evaporation process with microwave is 11.66% increased by adding Heat Transfer Medium Oil 150g. Preheating Heat Transfer Medium Oil or improving different ways injecting Heat Transfer Medium Oil is a good way to increase a rate of initiative moisture evaporation process.

An Experimental Study on Combustion Characteristics of Radiant Burner (복사 버너의 연소특성에 관한 실험적 연구)

  • Wie, Jae-Hyug;Lee, Dae-Rae;Kim, Young-Soo;Jeon, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.19-25
    • /
    • 2006
  • Energy efficient and low pollution combustion systems the use gaseous fuels have been in great demand in recent year. Radiant burner in many different forms are emerging as very desirable combustion systems for same reason. Porous radiant burners are used in drying, preheating and curing, and in other type of materials processing and manufacturing processes. However, little knowledge is available about the operating characteristics and the structure of flames in porous ceramic fiber radiant burners. The objective of the present work is to investigate the global performance characteristics of the ceramic fiber burner. A detailed study which includes the spectral intensity, gas temperature, radiation efficiency and global pollutant emissions. Another objective is to study the flame structure of the ceramic fiber burner by measuring the local gas temperature. The results indicate that ceramic fiber burner do offer a 19-44% gain in radiant efficiency. The ceramic fiber burner exhibit significant spectral intensity peaks in the band at $2.0-2.5{\mu}m$. The local temperature distribution inside the mat and near the mat surface as a function of the equivalence ratio can be reasonably interpreted by the relation of the heat balance in the mat and movement of the reaction zone. Nox emission from ceramic fiber burner is less than 25ppm throughout the operating range.

  • PDF

A study on the application of recuperative burner system to a teeming ladle (티밍래들에 폐열회수버너의 적용)

  • 양제복;정대헌;김원배
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 한국에너지공학회 1998년도 추계 학술발표회 논문집
    • /
    • pp.180-192
    • /
    • 1998
  • One of the conventional gas burners has nowadays been used for ladle preheating. As a ladle is one of the open-type furnaces, however, it causes to consume much fuel because of high temperature of exhaust gas from the ladle and the exhaust gas passing through ladle cover makes it worsen a working environment nearby. Therefore, the objective of this study is to develop the recuperative burner system applying for an existing teeming ladle , which is integrated with burner, recuperator and eductor as one of the new type combustion equipments and has many advantages of simple installation, compactness and easy control, especially a great deal of energy saving through the waste heat recovery from exhaust gas. The contents of the study is to design, manufacture of recuperative burner system and to perform its tests experimentally after applying to the teeming ladle in the capacity of 100 ton. Its heat release rate is 1,700,000 kcal/h with COG(Cokes Oven Gas) as fuel gas. The test items are the temperature distribution inside the ladle and the preheated air temperature change depending upon the exhaust gas. Nox, exhaust gas analysis and noise.

  • PDF

2D Heat Transfer Model for the Prediction of Temperature of Slab in a Direct-Fired Reheating Furnace (가열로 내 슬랩의 온도 예측을 위한 2차원 열전달 모델)

  • Lee Dong-Eun;Park Hae-Doo;Kim Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제30권10호
    • /
    • pp.950-956
    • /
    • 2006
  • A mathematical heat transfer model for the prediction of heat flux on the slab surface and temperature distribution in the slab has been developed by considering the thermal radiation in the furnace and transient conduction governing equations in the slab, respectively. The furnace is modeled as radiating medium with spatially varying temperature and constant absorption coefficient. The slab is moved with constant speed through non-firing, charging, preheating, heating, and soaking zones in the furnace. Radiative heat flux which is calculated from the radiative heat exchange within the furnace modeled using the FVM by considering the effect of furnace wall, slab, and combustion gases is applied as the boundary condition of the transient conduction equation of the slab. Heat transfer characteristics and temperature behavior of the slab is investigated by changing such parameters as absorption coefficient and emissivity of the slab. Comparison with the experimental work shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace.

Performance and Emissions Characteristics of a Diesel Engine with Some Bio-Oil Fuels

  • La, Woo-Jung;Ju, Eun-Sun;Kim, Byong-Hwa;Cho, Ki-Hyun;Kim, Jong-Chun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.359-368
    • /
    • 1996
  • The performance and exhaust emissions of a diesel engine using light oil, heated, rice-bran oil , heated rice-bran oil treated with ultrasonic wave, used frying oil, use frying oil treated with ultrasonic wave, used frying oil, used frying oil treated with ultrasonic wave, methyl esters of rice-bran oil and used frying oil have been compared. All the fuels performed satisfactorily in a precombustion chamber-type diesel engine without injection pump recalibration or any engine modification at the range of engine speed from 1600 to 2800 rpm at its full load during a sort period , with the rice-bran oil and rice-bran oil treated with ultrasonic wave requiring somewhat preheating when ambient temperature was below 15$^{\circ}C$. General performance and emission characteristics of light oil and bio-oils were comparable , with the bio-oil based fuels giving very low SO$_2$ and lower smoke readings.

  • PDF

Bi2212 Tube Characteristics for SCFCL (한류기용 Bi2212 튜브의 특성)

  • Lee, N.I.;Jang, G.E.;Oh, I.S.;Park, G.B.
    • Progress in Superconductivity
    • /
    • 제7권2호
    • /
    • pp.174-178
    • /
    • 2006
  • For the practical application on SCFCL, Bi2212 tubes were fabricated by Centrifugal Forming Process (CFP) in terms of many different processing parameters. Typical sizes of tubes were 60, 150 mm in length and 2.5, 3.5, 4.8 mm in thickness. Initially powder was melted by induction heating. The optimum range of melting temperatures and preheating temperature were $1100^{\circ}C$ and $500^{\circ}C$ for 30min respectively. The nominal mold rotating speed was around 1000 RPM. A tube was annealed at $840^{\circ}C$ for 80 hours in oxygen atmosphere. The tube of 50mm x 70mm x 2.5mm, rotated with 1000 RPM showed $I_c=890\;A\;and\;T_c=80$. It was found that the tube processed with faster rate of mold rotation speed, thinner tube thickness and shorter tube length shows better electric characteristics as compared with the tube normally processed. In order to study the uniformity heat and fluid flow analysis tool was adopted along tube.

  • PDF

Effects of cladding speed and preheating temperature on the productivity of AS wire (AS wire의 생산성에 미치는 클래딩속도와 예열온도의 영향)

  • Yoon J. S.;Lee S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.373-376
    • /
    • 2005
  • In recent years, there has been a growing need fur productivity improvement of ACS wire (Aluminum clad Steel wire) In optical communication market. So, it is necessary to improve the production speed and following quality of ACS wire to reduce the unit cost of the products. In this study, the pre-heating temperature and cladding speed is chosen as the factors can influence the mechanical and metallurgical properties during cladding, and the changing behavior of mechanical property and microstructure by controlling above two factors are investigated. And the bearing length and approach angle in cladding die are selected as the important elements for designing optimum die enabling high speed cladding. So we carried out FE(Finite Element) analysis using the above two elements as variables. This paper aims to understand the change of mechanical properties and microstructure according to the change of each factor during cladding and suggest the optimized cladding condition to get the best quality of OPGW. And also we would like to introduce the optimum die structure that enables high-speed cladding.

  • PDF

Effect of Thermal Energy of In-Flight Particles on Impacting Behavior for NiTiZrSiSn Bulk Metallic Glass during Kinetic Spraying (비행입자의 열 에너지에 따른 NiTiZrSiSn 벌크 비정질 분말의 적층 거동)

  • Yoon, Sang-Hoon;Kim, Soo-Ki;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • 제25권3호
    • /
    • pp.37-44
    • /
    • 2007
  • Mechanical and thermomechanical properties of the bulk metallic glass (BMG) are so unique that the deformation behavior is largely dependent on the temperature and the strain rate. Impacting behavior of NiTiZrSiSn bulk metallic glass powder during kinetic spraying was investigated in this study. Considering the impact behavior of the BMG, the kinetic spraying system was modified and attached the powder preheating system to make the transition from the inhomogeneous deformation to the homogeneous deformation of impacting BMG particle easy BMG splat formation is considered from the viewpoint of the adiabatic shear instability. It is suggested that the impact behavior of bulk metallic glass particle is determined by the competition between fracture and deformation. The bonding of the impacting NiTiZrSiSn bulk amorphous particle was primarily caused by the temperature-dependent deformation and fracture (local liquid formation) behavior.

A Study of Laser Joining for Polymer 2D Camber Compensation (폴리머 2D 캠버 보상을 위한 레이저용접 기술)

  • Lee, Young-Min;Yoon, Jin-Young;Song, Chi-Hun;Choi, Hae-Woon
    • Laser Solutions
    • /
    • 제15권2호
    • /
    • pp.15-20
    • /
    • 2012
  • A novel joining technology was developed to compensate the camber in polymers. The preheating laser beam circulates on the joining location and the accumulated heat serves to increase the flexibility of neighboring polymers. The temperature rises up to the glass transient temperature of the polymers and continually loading spring force closes the gap of camber. The irradiated laser was 808nm central wavelength and the power varied between 2Watt and 5Watt. The laps were adjusted between 3 and 10 and the optimum process parameters were 3Watt and 5 laps for the specific application. An FEM analysis was introduced to understand the mechanism of joining by the transient temperature distribution on the polymers. Thermocouples experiments were also tried to correlate the numerical analysis results and it showed the trend of heat accumulation in experiments.

  • PDF