• Title/Summary/Keyword: preference-based optimization

Search Result 61, Processing Time 0.029 seconds

A Combinatorial Optimization for Influential Factor Analysis: a Case Study of Political Preference in Korea

  • Yun, Sung Bum;Yoon, Sanghyun;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.415-422
    • /
    • 2017
  • Finding influential factors from given clustering result is a typical data science problem. Genetic Algorithm based method is proposed to derive influential factors and its performance is compared with two conventional methods, Classification and Regression Tree (CART) and Chi-Squared Automatic Interaction Detection (CHAID), by using Dunn's index measure. To extract the influential factors of preference towards political parties in South Korea, the vote result of $18^{th}$ presidential election and 'Demographic', 'Health and Welfare', 'Economic' and 'Business' related data were used. Based on the analysis, reverse engineering was implemented. Implementation of reverse engineering based approach for influential factor analysis can provide new set of influential variables which can present new insight towards the data mining field.

TOPSIS-Based Multi-Objective Shape Optimization for a CRT Funnel (TOPSIS 를 적용한 CRT 후면유리의 다중목적 형상최적설계)

  • Lee, Kwang-Ki;Han, Jeong-Woo;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.729-736
    • /
    • 2011
  • The technique for order preference by similarity to ideal solution (TOPSIS) is regarded as a classical method of multiple attribute decision making (MADM), often used to solve various decision-making or selection problems. It is based on the concept that the chosen alternative should have the shortest distance from the positive ideal solution and the farthest distance from the negative ideal solution. The TOPSIS can be applied to a design process for carrying out multi-objective shape optimization wherein the best and worst alternatives are to be decided. In this paper, multi-objective shape optimization using the TOPSIS and Rational Bezier curve was applied to the funnel of a cathode-ray tube (CRT). In order to minimize the weight and first principal stress, a new multi-objective shape optimization methodology is proposed, wherein the relative-closeness coefficients of the TOPSIS are defined as the performance indices of a multi-objective function and evaluated by response surface models. This methodology enables the designer to decide on the best solution from a number of design specification groups by examining the various conflicts between the weight and the first principal stress.

A Memory Configuration Method for Virtual Machine Based on User Preference in Distributed Cloud

  • Liu, Shukun;Jia, Weijia;Pan, Xianmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5234-5251
    • /
    • 2018
  • It is well-known that virtualization technology can bring many benefits not only to users but also to service providers. From the view of system security and resource utility, higher resource sharing degree and higher system reliability can be obtained by the introduction of virtualization technology in distributed cloud. The small size time-sharing multiplexing technology which is based on virtual machine in distributed cloud platform can enhance the resource utilization effectively by server consolidation. In this paper, the concept of memory block and user satisfaction is redefined combined with user requirements. According to the unbalanced memory resource states and user preference requirements in multi-virtual machine environments, a model of proper memory resource allocation is proposed combined with memory block and user satisfaction, and at the same time a memory optimization allocation algorithm is proposed which is based on virtual memory block, makespan and user satisfaction under the premise of an orderly physical nodes states also. In the algorithm, a memory optimal problem can be transformed into a resource workload balance problem. All the virtual machine tasks are simulated in Cloudsim platform. And the experimental results show that the problem of virtual machine memory resource allocation can be solved flexibly and efficiently.

Experimental validation of FE model updating based on multi-objective optimization using the surrogate model

  • Hwang, Yongmoon;Jin, Seung-seop;Jung, Ho-Yeon;Kim, Sehoon;Lee, Jong-Jae;Jung, Hyung-Jo
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.173-181
    • /
    • 2018
  • In this paper, finite element (FE) model updating based on multi-objective optimization with the surrogate model for a steel plate girder bridge is investigated. Conventionally, FE model updating for bridge structures uses single-objective optimization with finite element analysis (FEA). In the case of the conventional method, computational burden occurs considerably because a lot of iteration are performed during the updating process. This issue can be addressed by replacing FEA with the surrogate model. The other problem is that the updating result from single-objective optimization depends on the condition of the weighting factors. Previous studies have used the trial-and-error strategy, genetic algorithm, or user's preference to obtain the most preferred model; but it needs considerable computation cost. In this study, the FE model updating method consisting of the surrogate model and multi-objective optimization, which can construct the Pareto-optimal front through a single run without considering the weighting factors, is proposed to overcome the limitations of the single-objective optimization. To verify the proposed method, the results of the proposed method are compared with those of the single-objective optimization. The comparison shows that the updated model from the multi-objective optimization is superior to the result of single-objective optimization in calculation time as well as the relative errors between the updated model and measurement.

An Offloading Scheduling Strategy with Minimized Power Overhead for Internet of Vehicles Based on Mobile Edge Computing

  • He, Bo;Li, Tianzhang
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.489-504
    • /
    • 2021
  • By distributing computing tasks among devices at the edge of networks, edge computing uses virtualization, distributed computing and parallel computing technologies to enable users dynamically obtain computing power, storage space and other services as needed. Applying edge computing architectures to Internet of Vehicles can effectively alleviate the contradiction among the large amount of computing, low delayed vehicle applications, and the limited and uneven resource distribution of vehicles. In this paper, a predictive offloading strategy based on the MEC load state is proposed, which not only considers reducing the delay of calculation results by the RSU multi-hop backhaul, but also reduces the queuing time of tasks at MEC servers. Firstly, the delay factor and the energy consumption factor are introduced according to the characteristics of tasks, and the cost of local execution and offloading to MEC servers for execution are defined. Then, from the perspective of vehicles, the delay preference factor and the energy consumption preference factor are introduced to define the cost of executing a computing task for another computing task. Furthermore, a mathematical optimization model for minimizing the power overhead is constructed with the constraints of time delay and power consumption. Additionally, the simulated annealing algorithm is utilized to solve the optimization model. The simulation results show that this strategy can effectively reduce the system power consumption by shortening the task execution delay. Finally, we can choose whether to offload computing tasks to MEC server for execution according to the size of two costs. This strategy not only meets the requirements of time delay and energy consumption, but also ensures the lowest cost.

Research on Airport Public Art Design Elements and Preferences Based on Big Data Sentiment Analysis (빅데이터 감성분석에 따른 공항 공공예술 디자인 요소 및 선호도 연구)

  • Zhang, Yun;Zou, ChangYun;Kim, CheeYong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1499-1511
    • /
    • 2022
  • In the context of globalization, circulation between cities has become more frequent. The airport is no longer just a place for boarding, disembarking, and transportation, but a public place that serves as the communication function of the "aviation city". The intervention of public art in the airport space not only gives users a sense of space experience, but also becomes a unique carrier for city and country image shaping. The purpose of this paper is to study the emotional value brought by airport public art to users, and to investigate the correlation analysis of public art design elements and user preferences based on this premise. The research methods are machine learning method and SPSS 21.0. The user's emotional value is introduced in the big data evaluation, and the preference and inclination of airport users to various elements of public art are analyzed by questionnaire. Through the research conclusion, the preference and main contradiction of users in the airport for the four dimensions of public art design elements are obtained. Opinions and optimization methods to provide reference data and theoretical support for public art design.

Optimal Pricing Design Based on Preference Values of Purchasing Restrictions for Tour Products (여행상품 구매조건의 선호가치에 따른 최적 여행상품 가격설계 연구)

  • Hwang, Myung Sun;Kim, Su Young;Yoon, Moon Gil
    • Korean Management Science Review
    • /
    • v.31 no.1
    • /
    • pp.27-40
    • /
    • 2014
  • Tour products have been recognized as a perishable asset. For tour operation companies (TOCs), improving profitability is a core decision problem for their business. Since package tour products, typical products of TOCs, are perishable after the tour was departed, TOCs have been tried to increase their sales before the departure date with various marketing strategies including price discounts. The pricing problem for perishable assets have been studied in Revenue Management for a long time. However, it is hard to find a research on pricing decisions for tour products. In this paper, we focus on a pricing problem for tour products. In particular, we will consider the pricing scheme with customer preference values on purchasing conditions. With conjoint analysis, we can use the part-worth value as a preference value for each level of purchasing conditions. To construct various discount prices, we use an enumeration method and suggest a mathematical optimization model. With experimental analysis for a sample tour package, we will show that our pricing process is very helpful for designing customer-oriented pricing decision.

Design Optimization Using Conflicting Building Information - A case Study Focused on the View and Structure in High-Rise Building Design

  • Cheon, Janghwan
    • Architectural research
    • /
    • v.15 no.2
    • /
    • pp.69-75
    • /
    • 2013
  • Within residential high-rise market there are many value determining factors. Site condition, view, program, units and structure are important parameters that are directly related to the financial aspect of the project. However, most of the studies of high-rise building design focus on the facade and the shape strategies from an esthetic point of view without considering these factors. The objective of this study is to investigate new design approach that incorporates site, program and structural information at an early stage as a generator of building form and explore a wide range of strategies to negotiate these factors in the process of design/decision making. Not being based on designer's subjective preference or style, architects still can create interesting building design through integration and negotiation of various building information. Since this form is based on real data, not just play of form, we can expect that this form has great potential to be developed into real one at the later design phase.

Set-Based Multi-objective Design Optimization at the Early Phase of Design(The First Report) : Theory and Design Support System (초기 설계단계에서의 셋 베이스 다목적 설계 최적화(제1보) : 이론 및 설계지원 시스템)

  • Nahm, Yoon-Eui
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.2
    • /
    • pp.112-120
    • /
    • 2011
  • The early phase of design intrinsically contains multiple sources of uncertainty in describing design, and nevertheless the decision-making process at this phase exerts a critical effect upon drawing a successful design. This paper proposes a set-based design approach for multi-objective design problem under uncertainty. The proposed design approach consists of four design processes including set representation, set propagation, set modification, and set narrowing. This approach enables the flexible and robust design while incorporating designer's preference structure. In contrast to existing optimization techniques, this approach generates a ranged set of design solutions that satisfy changing sets of performance requirements.

Multi-level Shape Optimization of Lower Arm by using TOPSIS and Computational Orthogonal Array (TOPSIS와 전산직교배열을 적용한 자동차 로워암의 다수준 형상최적설계)

  • Lee, Kwang-Ki;Han, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.482-489
    • /
    • 2011
  • In practical design process, designer needs to find an optimal solution by using full factorial discrete combination, rather than by using optimization algorithm considering continuous design variables. So, ANOVA(Analysis of Variance) based on an orthogonal array, i.e. Taguchi method, has been widely used in most parts of industry area. However, the Taguchi method is limited for the shape optimization by using CAE, because the multi-level and multi-objective optimization can't be carried out simultaneously. In this study, a combined method was proposed taking into account of multi-level computational orthogonal array and TOPSIS(Technique for Order preference by Similarity to Ideal Solution), which is known as a classical method of multiple attribute decision making and enables to solve various decision making or selection problems in an aspect of multi-objective optimization. The proposed method was applied to a case study of the multi-level shape optimization of lower arm used to automobile parts, and the design space was explored via an efficient application of the related CAE tools. The multi-level shape optimization was performed sequentially by applying both of the neural network model generated from seven-level four-factor computational orthogonal array and the TOPSIS. The weight and maximum stress of the lower arm, as the objective functions for the multi-level shape optimization, showed an improvement of 0.07% and 17.89%, respectively. In addition, the number of CAE carried out for the shape optimization was only 55 times in comparison to full factorial method necessary to 2,401 times.