Najjar, Manal F.;Nehdi, Moncef L.;Azabi, Tareq M.;Soliman, Ahmed M.
Computers and Concrete
/
제19권2호
/
pp.133-142
/
2017
Two-stage concrete (TSC), also known as pre-placed aggregate concrete, is characterized by its unique placement technique, whereby the coarse aggregate is first placed in the formwork, then injected with a special grout. Despite its superior sustainability and technical features, TSC has remained a basic concrete technology without much use of modern chemical admixtures, new binders, fiber reinforcement or other emerging additions. In the present study, an experimental database for TSC was built. Different types of cementitious binders (single, binary, and ternary) comprising ordinary portland cement, fly ash, silica fume, and metakaolin were used to produce the various TSC mixtures. Different dosages of steel fibres having different lengths were also incorporated to enhance the mechanical properties of TSC. The database thus created was used to develop fuzzy logic models as predictive tools for the grout flowability and mechanical properties of TSC mixtures. The performance of the developed models was evaluated using statistical parameters and error analyses. The results indicate that the fuzzy logic models thus developed can be powerful tools for predicting the TSC grout flowability and mechanical properties and a useful aid for the design of TSC mixtures.
This paper analyses the mathematical model and control strategies of a Hybrid Active Power Filter with Injection Circuit (IHAPF). The control strategy based on the load harmonic current detection is selected. A novel control method for a IHAPF, which is based on the analyzed control mathematical model, is proposed. It consists of two closed-control loops. The upper closed-control loop consists of a single fuzzy logic controller and the IHAPF model, while the lower closed-control loop is composed of an Adaptive Network based Fuzzy Inference System (ANFIS) controller, a Neural Generalized Predictive (NGP) regulator and the IHAPF model. The purpose of the lower closed-control loop is to improve the performance of the upper closed-control loop. When compared to other control methods, the simulation and experimental results show that the proposed control method has the advantages of a shorter response time, good online control and very effective harmonics reduction.
Weighted network link prediction is a challenge issue in complex network analysis. Unsupervised methods based on local structure are widely used to handle the predictive task. However, the results are still far from satisfied as major literatures neglect two important points: common neighbors produce different influence on potential links; weighted values associated with links in local structure are also different. In this paper, we adapt an effective link prediction model-local naive Bayes model into a weighted scenario to address this issue. Correspondingly, we propose a weighted local naive Bayes (WLNB) probabilistic link prediction framework. The main contribution here is that a weighted cluster coefficient has been incorporated, allowing our model to inference the weighted contribution in the predicting stage. In addition, WLNB can extensively be applied to several classic similarity metrics. We evaluate WLNB on different kinds of real-world weighted datasets. Experimental results show that our proposed approach performs better (by AUC and Prec) than several alternative methods for link prediction in weighted complex networks.
컴퓨터의 발전에 따른 마코브체인 몬테카를로방법을 소프트웨어 신뢰확률모형에 이용하였다. 베이지안 추론에서 조건부분포를 가지고 사후분포를 결정하는데 있어서의 계산문제와 이론적인 정당성을 고려, 마코프연쇄와 메트로폴리스방법의 관계를 고찰하였으며, 특히 Mus-Okumoto와 Erlang(2)의 중첩모형에 대하여 깁스샘플링 알고리즘과 메트로폴리스 알고리즘을 활용하며 베이지안 계산과 예측 우도기준에 의 한 모형선택을 제안하고 Cox-Lewis에 의해 계시된 Thing method를 이용한 모의실험자료를 이용하여 수치적인 계산을 시행하고 그 결과가 제시되었다.
웹으로부터 유용한 정보를 얻기 위한 연구는 현재 많이 진행되고 있다. 본 논문에서는 특히 웹 로그 데이터의 희소성에 대한 문제 해결과 이를 통한 웹 사용자의 군집화 방안에 대하여 연구하였다. MCMC 방법의 베이지안 추론에 의한 결측치 대체 기법을 이용하여 웹 데이터의 희소성을 제거하였고, 주성분에 의한 산점도를 통하여 형상지도의 차원을 결정한 자기 조직화지도를 이용하여 웹 사용자의 군집화를 수행하였다. 제안 기법은 기존의 방법들에 비해 모형의 정확도와 빠른 학습 시간을 제공하여 주었다. KDD Cup 데이터를 이용한 실험을 통하여 제안 방법에 대한 문제 해결 절차 및 성능 평가를 객관적으로 확인하였다.
In this paper, a new architecture and comprehensive design methodology of genetically optimized Rule-based Fuzzy Polynomial Neural Networks(gRFPNN) are introduced and a series of numeric experiments are carried out. The architecture of the resulting gRFPNN results from asynergistic usage of the hybrid system generated by combining rule-based Fuzzy Neural Networks(FNN) with polynomial neural networks (PNN). FNN contributes to the formation of the premise part of the overall rule-based structure of the gRFPNN. The consequence part of the gRFPNN is designed using PNNs. At the premise part of the gRFPNN, FNN exploits fuzzy set based approach designed by using space partitioning in terms of individual variables and comes in two fuzzy inference forms: simplified and linear. As the consequence part of the gRFPNN, the development of the genetically optimized PNN dwells on two general optimization mechanism: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the gRFPNN, the models are experimented with the use of several representative numerical examples. A comparative analysis shows that the proposed gRFPNN are models with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.
Khan, Hafiz Mohammad Rafiqullah;Ibrahimou, Boubakari;Saxena, Anshul;Gabbidon, Kemesha;Abdool-Ghany, Faheema;Ramamoorthy, Venkataraghavan;Ullah, Duff;Stewart, Tiffanie Shauna-Jeanne
Asian Pacific Journal of Cancer Prevention
/
제15권19호
/
pp.8371-8376
/
2014
Background: The use of statistical methods has become an imperative tool in breast cancer survival data analysis. The purpose of this study was to develop the best statistical probability model using the Bayesian method to predict future survival times for the black non-Hispanic female breast cancer patients diagnosed during 1973-2009 in the U.S. Materials and Methods: We used a stratified random sample of black non-Hispanic female breast cancer patient data from the Surveillance Epidemiology and End Results (SEER) database. Survival analysis was performed using Kaplan-Meier and Cox proportional regression methods. Four advanced types of statistical models, Exponentiated Exponential (EE), Beta Generalized Exponential (BGE), Exponentiated Weibull (EW), and Beta Inverse Weibull (BIW) were utilized for data analysis. The statistical model building criteria, Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Deviance Information Criteria (DIC) were used to measure the goodness of fit tests. Furthermore, we used the Bayesian approach to obtain the predictive survival inferences from the best-fit data based on the exponentiated Weibull model. Results: We identified the highest number of black non-Hispanic female breast cancer patients in Michigan and the lowest in Hawaii. The mean (SD), of age at diagnosis (years) was 58.3 (14.43). The mean (SD), of survival time (months) for black non-Hispanic females was 66.8 (30.20). Non-Hispanic blacks had a significantly increased risk of death compared to Black Hispanics (Hazard ratio: 1.96, 95%CI: 1.51-2.54). Compared to other statistical probability models, we found that the exponentiated Weibull model better fits for the survival times. By making use of the Bayesian method predictive inferences for future survival times were obtained. Conclusions: These findings will be of great significance in determining appropriate treatment plans and health-care cost allocation. Furthermore, the same approach should contribute to build future predictive models for any health related diseases.
본 논문에서는, HCM 클러스러팅 방법과 유전자 알고리즘을 이용하여 다중 FNN 모델을 동정하고 최적화 한다. 제안된 다중 FNN은 Yamakawa의 FNN을 기본으로 하며, 퍼지 추론 방법으로 간략 추론을, 학습으로는 오류 역전파 알고리즘을 사용한다. 다중 FNN 모델의 구조와 파라미터를 동정하기 위해 HCM 클러스터링과 유전자 알고리즘을 사용한다. 여기서, 시스템 모델링을 위해 데이터 전처리 기능을 수행하는 HCM클러스터링 방법은 I/O 프로세서 공정 데이터를 이용하여 입출력 공간분할에 의한 다중 FNN 구조를 결정하기 위해 사용된다. 또한 유전자 알고리즘을 사용하여 멤버쉽함수의 정점, 학습율, 모멘텀 계수와 같은 다중 FNN 모델의 파라미터들을 동조한다. 모델의 근사화와 일반화 능력 사이에 합히적 균형을 얻기 위해 하중계수를 가진 합성 성능지수를 사용한다. 이 합성 성능지수는 근사화 및 예측 능력사이의 상호 균형과 의존성을 고려한 하중계수를 가진 합성 목적함수를 의미한다. 데이터 개수, 비선형성의 정도에 의존하는 이 합성 목적함수의 하중계수의 선택, 조절을 통하여 최적의 다중 FNN 모델을 설계하는 것이 유용하고 효과적임을 보인다. 제안된 모델의 성능 평가를 위하여 가스로 공정의 시계열 데이터와 비선형 함수의 수치 데이터를 사용한다.
본 연구는 뉴로퍼지 네트워크와 다항식 뉴럴네트워크를 합성한 하이브리드 모델링 구조인 고급 뉴로퍼지 다항식 네트워크(Advanced neurofuzzy polynomial networks ; ANFPN)를 제안한다. 제안된 네트워크 구조는 높은 비선형 규칙 기반 모델로, CI(Computational Intelligence)의 기술, 즉 퍼지집합, 뉴럴네트워크, 유전자 알고리즘에 의해 설계되어진다. 뉴로퍼지 네트워크는 ANFPN 구조의 전반부를, 다항식 뉴럴네트워크는 후반부를 구성한다. ANFPN의 전반부에서, 뉴로퍼지 네트워크는 간략추론, 오류역전파 학습 규칙을 이용한다. 멤버쉽함수의 파라미터, 학습율, 모멘텀 계수는 유전자 최적화를 이용하여 조절된다. ANFPN의 후반부 구조로서 다항식 뉴럴네트워크는 학습을 통해 생성되는(전개되는) 유연한 네트워크 구조이다. 특히 다항식 뉴럴네트워크의 층과 노드 수는 고정되어 있지 않고 동적으로 생성된다. 본 연구에서는, 2가지 형태의 ANFPN 구조를 제안한다. 즉 기본 구조와 변형된 구조이다. 여기서 기본 구조와 변형된 구조는 다항식 뉴럴네트워크 구조의 각 층에서 입력변수의 수와 회귀다항식의 차수에 의존한다. 두 결합 구조의 특징 때문에 공정 시스템의 비선형적인 특성을 고려할 수 있고 보다 우수한 예측능력을 가진 좋은 출력선응을 얻을 수 있게 한다. ANFPN의 유용성과 실용성은 2개의 수치 예제를 통해 논의된다. 제안된 ANFPN은 기존의 모델보다 높은 정밀도와 예측능력을 가진 모델을 생성함을 보인다.
Communications for Statistical Applications and Methods
/
제18권1호
/
pp.79-87
/
2011
공간적, 시간적으로 퍼져나가는 전염성이 강한 질병인 수두자료를 이용하여 공간 시계열 자료를 분석하는데 있어 일반적으로 알려진 ARIMA 모형에 적합하여 분석을 행하면 공간적인 정보를 반영하지 못하기 때문에 기존에 시간만을 고려한 시계열 분석방법에 공간통계의 공간적 정보를 반영한 공간시계열 모형을 고려한다. 공간시계열 모형에서 공간의 위치 및 영향은 시계열 모형에 공간적 정보로써 가중치행렬을 더 함으로써 처리 가능해진다. 가중치행렬은 지리적으로 인접한 지역일수록 공간의존도가 높다는 것을 반영한 것이며 공간시계열 모형의 연구에서 가중치행렬은 인접한 지역들은 동일한 영향을 줄 것이라 가정하였다. 따라서 본 논문에서는 공간시계열 모형인 STARMA 모형과 STBL 모형에 대한 식별방법, 통계적 추론 및 예측력 비교에 대해 연구하였고 특히, 모수추정의 알고리즘 비교와 공간시계열 모형의 예측력 비교를 통해 Kalman-Filter 방법의 우수성을 보이고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.