• Title/Summary/Keyword: prediction model for wind speed

Search Result 177, Processing Time 0.022 seconds

The Data-based Prediction of Police Calls Using Machine Learning (기계학습을 활용한 데이터 기반 경찰신고건수 예측)

  • Choi, Jaehun
    • The Journal of Bigdata
    • /
    • v.3 no.2
    • /
    • pp.101-112
    • /
    • 2018
  • The purpose of the study is to predict the number of police calls using neural network which is one of the machine learning and negative binomial regression, by using the data of 112 police calls received from Chungnam Provincial Police Agency from June 2016 to May 2017. The variables which may affect the police calls have been selected for developing the prediction model : time, holiday, the day before holiday, season, temperature, precipitation, wind speed, jurisdictional area, population, the number of foreigners, single house rate and other house rate. Some variables show positive correlation, and others negative one. The comparison of the methods can be summarized as follows. Neural network has correlation coefficient of 0.7702 between predicted and actual values with RMSE 2.557. Negative binomial regression on the other hand shows correlation coefficient of 0.7158 with RMSE 2.831. Neural network has low interpretability, but an excellent predictability compared with the negative binomial regression. Based on the prediction model, the police agency can do the optimal manpower allocation for given values in the selected variables.

Optimal Micrositing and Annual Energy Production Prediction for Wind Farm Using Long-term Wind Speed Correlation Between AWS and MERRA (AWS와 MERRA 데이터의 장기간 풍속보정을 통한 풍력터빈 최적배치 및 연간에너지생산량 예측)

  • Park, Mi Ho;Kim, Bum Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.201-212
    • /
    • 2016
  • A Wind resource assessment and optimal micrositing of wind turbines were implemented for the development of an onshore wind farm of 30 MW capacity on Gadeok Island in Busan, Republic of Korea. The wind data measured by the automatic weather system (AWS) that was installed and operated in the candidate area were used, and a reliability investigation was conducted through a data quality check. The AWS data were measured for one year, and were corrected for the long term of 30 years by using the modern era retrospective analysis for research and application (MERRA) reanalysis data and a measure- correlate-predict (MCP) technique; the corrected data were used for the optimal micrositing of the wind turbines. The micrositing of the 3 MW wind turbines was conducted under 25 conditions, then the best-optimized layout was analyzed with a various wake model. When the optimization was complete, the estimated park efficiency and capacity factor were from 97.6 to 98.7 and from 37.9 to 38.3, respectively. Furthermore, the annual energy production (AEP), including wake losses, was estimated to be from 99,598.4 MWh to 100,732.9 MWh, and the area was confirmed as a highly economical location for development of a wind farm.

A statistical procedure of analyzing container ship operation data for finding fuel consumption patterns (연료 소비 패턴 발견을 위한 컨테이너선 운항데이터 분석의 통계적 절차)

  • Kim, Kyung-Jun;Lee, Su-Dong;Jun, Chi-Hyuck;Park, Kae-Myoung;Byeon, Sang-Su
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.5
    • /
    • pp.633-645
    • /
    • 2017
  • This study proposes a statistical procedure for analyzing container ship operation data that can help determine fuel consumption patterns. We first investigate the features that affect fuel consumption and develop the prediction model to find current fuel consumption. The ship data can be divided into two-type data. One set of operation data includes sea route, voyage information, longitudinal water speed, longitudinal ground speed, and wind, the other includes machinery data such as engine power, rpm, fuel consumption, temperature, and pressure. In this study, we separate the effects of external force on ships according to Beaufort Scale and apply a partial least squares regression to develop a prediction model.

The prediction of atmospheric concentrations of toluene using artificial neural network methods in Tehran

  • Asadollahfardi, Gholamreza;Aria, Shiva Homayoun;Mehdinejad, Mahdi
    • Advances in environmental research
    • /
    • v.4 no.4
    • /
    • pp.219-231
    • /
    • 2015
  • In recent years, raising air pollutants has become as a big concern, especially in metropolitan cities such as Tehran. Therefore, forecasting the level of pollutants plays a significant role in air quality management. One of the forecasting tools that can be used is an artificial neural network which is able to model the complicated process of air pollution. In this study, we applied two different methods of artificial neural networks, the Multilayer Perceptron (MLP) and Radial Basis Function (RBF), to predict the hourly air concentrations of toluene in Tehran. Hourly temperature, wind speed, humidity and $NO_x$ were selected as inputs. Both methods had acceptable results; however, the RBF neural network produced better results. The coefficient of determination ($R^2$) between the observed and predicted data was 0.9642 and 0.99 for MLP and RBF neural networks, respectively. The results of the mean bias errors (MBE) were 0.00 and -0.014 for RBF and MLP, respectively which indicate the adequacy of the models. The index of agreement (IA) between the observed and predicted data was 0.999 and 0.994 in the RBF and the MLP, respectively which indicates the efficiency of the models. Finally, sensitivity analysis related to the MLP neural network determined that temperature was the most significant factor in air concentration of toluene in Tehran which may be due to the volatile nature of toluene.

Dispersion Modeling Methodology for Hazardous/Toxic Gas Releases from Chemical Plant Facilities (화학장치설비의 유해독성가스 누출에 대한 분산모델링 방법론)

  • Song Duk-Man
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.73-80
    • /
    • 1997
  • This study was performed to develop the dispersion modeling methodology for quantitative prediction of the hazard distance or toxic buffer distance by comparing 10-min average, 30-min average, and 1-hr average maximum ground-level concentration with $Cl_2$ regultaion concentration, IDLH and ERPG-3 concentration for hazardous toxic gas, $Cl_2$ releases from the storage tank of the chemical plant facilities. For this dispersion modeling, the source term model, dispersion model, meteorological and topographical data are incorporated into the SuperChems model, and then the effects of the atmospheric stability, wind speed, and surface roughness length changes on the maxum ground-level concentration were estimated.

  • PDF

Prediction of Performance Change for the Intake system of Smart UAV With Freestream Wind Direction Using CFD Analysis (CFD를 이용한 풍향에 따른 스마트무인기 흡기구 성능 변화 예측)

  • Jung Y. W.;Jun Y. M.;Yang S. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.95-99
    • /
    • 2004
  • The developing Smart UAV in KARI supposes high speed flight as like a conventional plane, as well as vertical takeoff and landing as like a helicopter. Therefore, the air intake system should be designed to provide the sufficient air flow to the engine and the maximum possible total pressure recovery at the engine intake screen over a wide range of flight conditions. For this purpose, we designed the intake system using a pilot type intake model and plenum chamber In this paper, we designed the intake model and analyzed the performance of designed intake system using the general-purpose commercial CFD code, CFD-ACE+ For 3-D calculation, we generated mesh using the unstructured gird and used $\kappa-\epsilon$ turbulence model. The analysis results of the total pressure variation and the velocity distribution was illustrated in this paper. The pressure recovery and distortion coefficient at a plane coincident with the compressor inlet were calculated and streamline variation through the intake system was investigated at the worst condition as well as the standard flight condition.

  • PDF

Damage Effects Modeling by Chlorine Leaks of Chemical Plants (화학공장의 염소 누출에 의한 피해 영향 모델링)

  • Jeong, Gyeong-Sam;Baik, Eun-Sun
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.76-87
    • /
    • 2018
  • This study describes the damage effects modeling for a quantitative prediction about the hazardous distances from pressurized chlorine saturated liquid tank, which has two-phase leakage. The heavy gas, chlorine is an accidental substance that is used as a raw material and intermediate in chemical plants. Based on the evaluation method for damage prediction and accident effects assessment models, the operating conditions were set as the standard conditions to reveal the optimal variables on an accident due to the leakage of a liquid chlorine storage vessel. A model of the atmospheric diffusion model, ALOHA (V5.4.4) developed by USEPA and NOAA, which is used for a risk assessment of Off-site Risk Assessment (ORA), was used. The Yeosu National Industrial Complex is designated as a model site, which manufactures and handles large quantities of chemical substances. Weather-related variables and process variables for each scenario need to be modelled to derive the characteristics of leakage accidents. The estimated levels of concern (LOC) were calculated based on the Gaussian diffusion model. As a result of ALOHA modeling, the hazardous distance due to chlorine diffusion increased with increasing air temperature and the wind speed decreased and the atmospheric stability was stabilized.

Estimation of leeway of jigging fishing vessels by external factors (외력에 의한 채낚기 어선의 표류 추정)

  • Chang-Heon, LEE;Kwang-Il, KIM;Joo-Sung, KIM;Sang-Lok, YOO
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.4
    • /
    • pp.299-309
    • /
    • 2022
  • Among the fishing vessels operating in the coastal waters, jigging fishing vessels were considered representative vessels engaged only by wind, sea, tide, and external force. Then, a fishing vessel with a length of shorter than 10 m from July 1, 2018 to August 5, 2019 was studied to obtain a drift prediction model by multiple regression analysis. In the correlation analysis between variables for leeway of speed and direction, the speed and direction of tidal seem to be the most affected in coastal waters. Therefore, it should be considered an explanatory variable when conducting drift tests. As a result of multiple regression analysis on the predicted equations of leeway speed and direction due to the external force on the drift of the fishing vessel, p < 0.000 was considered significant in the F-test, but the coefficient of determination was 55.2% and 37.8%. The effect on the predicted leeway speed was in the order of the tidal speed and current speed. In addition, the impact on the predicted leeway direction was in the order of the tidal speed and current speed. ŷ(m/s) = - 0.0011(x1) + 0.9206(x2) + 0.0001(x3) + 0.0002(x4) + 0.0050(x5) + 0.0529(x6) + 0.2457 ŷ(degree) = 0.6672(x1) + 93.1699(x2) + 0.0585(x3) - 0.0244(x4) - 1.2217(x5) + 4.6378(x6) - 0.0837

High Lift Device Design Optimization and Wind Tunnel Tests (고양력장치 설계 최적화 및 풍동시험)

  • Lee, Yung-Gyo;Kim, Cheol-Wan;Cho, Tae-Hwan
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.78-83
    • /
    • 2010
  • In the present paper, a flap was optimized to maximize the lift. A 2-element fowler flap system was utilized for optimization with an initial shape of general aviation airfoil and a flap shape designed by Wentz. Response surface method and Hicks-Henne shape function were implemented for optimization. 2-D Navier-Stokes method was used to solve flow field around aGA(W)-1 airfoil with a fowler flap. Commercial programs including Visual-Doc, Gambit/Tgridand Fluent were used. Upper surface shape and the flap gap were optimized and lift for landing condition was improved considerably. The original and optimized flaps were tested in the KARI's 1-m low speed wind tunnel to examine changes in aerodynamic characteristics. For optimized flap tests, the similar trend to prediction could be seen but stall angle of attack was lower than what was expected. Also, less gap than optimized design delayed stall and produced better lift characteristics. This is believed to be the effect of turbulence model.

The Impact of Satellite Observations on the UM-4DVar Analysis and Prediction System at KMA (위성자료가 기상청 전지구 통합 분석 예측 시스템에 미치는 효과)

  • Lee, Juwon;Lee, Seung-Woo;Han, Sang-Ok;Lee, Seung-Jae;Jang, Dong-Eon
    • Atmosphere
    • /
    • v.21 no.1
    • /
    • pp.85-93
    • /
    • 2011
  • UK Met Office Unified Model (UM) is a grid model applicable for both global and regional model configurations. The Met Office has developed a 4D-Var data assimilation system, which was implemented in the global forecast system on 5 October 2004. In an effort to improve its Numerical Weather Prediction (NWP) system, Korea Meteorological Administration (KMA) has adopted the UM system since 2008. The aim of this study is to provide the basic information on the effects of satellite data assimilation on UM performance by conducting global satellite data denial experiments. Advanced Tiros Operational Vertical Sounder (ATOVS), Infrared Atmospheric Sounding Interferometer (IASI), Special Sensor Microwave Imager Sounder (SSMIS) data, Global Positioning System Radio Occultation (GPSRO) data, Air Craft (CRAFT) data, Atmospheric Infrared Sounder (AIRS) data were assimilated in the UM global system. The contributions of assimilation of each kind of satellite data to improvements in UM performance were evaluated using analysis data of basic variables; geopotential height at 500 hPa, wind speed and temperature at 850 hPa and mean sea level pressure. The statistical verification using Root Mean Square Error (RMSE) showed that most of the satellite data have positive impacts on UM global analysis and forecasts.