• 제목/요약/키워드: prediction change

검색결과 1,930건 처리시간 0.028초

Survey of spatial and temporal landslide prediction methods and techniques

  • An, Hyunuk;Kim, Minseok;Lee, Giha;Viet, Tran The
    • 농업과학연구
    • /
    • 제43권4호
    • /
    • pp.507-521
    • /
    • 2016
  • Landslides are one of the most common natural hazards causing significant damage and casualties every year. In Korea, the increasing trend in landslide occurrence in recent decades, caused by climate change, has set off an alarm for researchers to find more reliable methods for landslide prediction. Therefore, an accurate landslide-susceptibility assessment is fundamental for preventing landslides and minimizing damages. However, analyzing the stability of a natural slope is not an easy task because it depends on numerous factors such as those related to vegetation, soil properties, soil moisture distribution, the amount and duration of rainfall, earthquakes, etc. A variety of different methods and techniques for evaluating landslide susceptibility have been proposed, but up to now no specific method or technique has been accepted as the standard method because it is very difficult to assess different methods with entirely different intrinsic and extrinsic data. Landslide prediction methods can fall into three categories: empirical, statistical, and physical approaches. This paper reviews previous research and surveys three groups of landslide prediction methods.

Modified Particle Filtering for Unstable Handheld Camera-Based Object Tracking

  • Lee, Seungwon;Hayes, Monson H.;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제1권2호
    • /
    • pp.78-87
    • /
    • 2012
  • In this paper, we address the tracking problem caused by camera motion and rolling shutter effects associated with CMOS sensors in consumer handheld cameras, such as mobile cameras, digital cameras, and digital camcorders. A modified particle filtering method is proposed for simultaneously tracking objects and compensating for the effects of camera motion. The proposed method uses an elastic registration algorithm (ER) that considers the global affine motion as well as the brightness and contrast between images, assuming that camera motion results in an affine transform of the image between two successive frames. By assuming that the camera motion is modeled globally by an affine transform, only the global affine model instead of the local model was considered. Only the brightness parameter was used in intensity variation. The contrast parameters used in the original ER algorithm were ignored because the change in illumination is small enough between temporally adjacent frames. The proposed particle filtering consists of the following four steps: (i) prediction step, (ii) compensating prediction state error based on camera motion estimation, (iii) update step and (iv) re-sampling step. A larger number of particles are needed when camera motion generates a prediction state error of an object at the prediction step. The proposed method robustly tracks the object of interest by compensating for the prediction state error using the affine motion model estimated from ER. Experimental results show that the proposed method outperforms the conventional particle filter, and can track moving objects robustly in consumer handheld imaging devices.

  • PDF

추천시스템의 희소성이 예측 정확도에 미치는 영향에 관한 연구 (The Effect of Data Sparsity on Prediction Accuracy in Recommender System)

  • 김선옥;이석준
    • 인터넷정보학회논문지
    • /
    • 제8권6호
    • /
    • pp.95-102
    • /
    • 2007
  • 협력적 필터링을 이용한 추천시스템은 희소성의 문제로 인해 예측의 정확도에 대한 신뢰성에 문제가 있다. 이는 선호도 평가치의 희소성이 크면 이웃선정과정에 문제가 있을 뿐만 아니라 예측의 정확도를 떨어뜨린다. 본 논문에서는 사용자의 응답 희소성에 따른 MAE의 변화를 조사하였으며 희소성에 따라 집단을 분류하고 분류된 집단에 따른 MAE는 유의적인 차이가 있는 지를 분석하였다. 그리고 희소성 문제로 인한 집단 간의 예측 정확도를 높이기 위한 방법으로 희소성이 있는 아이템을 선별하여 이들 중에서 선호도 응답이 많은 사용자 고객의 선호도 평균값을 선호도 평가 치로 대치시켜 희소성을 완화하여 추천시스템의 예측 정확도가 높아졌음을 연구하였다.

  • PDF

머신 러닝 회귀 방안을 이용한 인공지지체 기공 크기 예측모델 성능에 관한 연구 (A Study on Prediction Model Performance of Scaffold Pore Size Using Machine Learning Regression Method)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제19권1호
    • /
    • pp.36-41
    • /
    • 2020
  • In this paper, We need to change all print factors when which print scaffold with 400 ㎛ pore using FDM 3d printer. Therefore the print quantity is 10 billion times, So we are difficult to print on workplace. To solve the problem, we used the prediction model based machine learning regression. We preprocessed and learned the securing print condition data, and we produced different kinds of prediction models. We predicted the pore size of scaffolds not securing with new print condition data using prediction models. We have derived the print conditions that satisfy the pore size of 400 ㎛ among the predicted print conditions of pore size. We printed the scaffolds 5 times on the condition. We measured the pore size of the printed scaffold and compared the average pore size with the predicted pore size. We confirmed that error was less than 1%, and we were identify the model with the highest pore size prediction performance of scaffold.

Box-Jenkins 모형을 이용한 표고버섯 가격예측 (Prediction of Oak Mushroom Prices Using Box-Jenkins Methodology)

  • 민경택
    • 한국산림과학회지
    • /
    • 제95권6호
    • /
    • pp.778-783
    • /
    • 2006
  • 표고버섯의 재배와 출하 결정에서 단기 가격의 예측은 매우 중요하다. 표고버섯 가격의 형성에는 많은 요인들이 작용하고 있기 때문에 이를 구조모형으로 예측하는 것은 어려운 일이다. Box-Jenkins 방법을 이용한 표고버섯과 모형선정 과정에서 발생할 수 있는 오류를 줄이고 경우에 따라서는 더 높은 예측력을 가지기도 한다. 이 연구는 1992~2005년의 가락시장 표고버섯 중품 가격자료를 이용하여 시계열 분석 모형을 구축하고 단기 가격을 예측한 것이다. 그리고 분석에 포함되지 않은 2006년의 실제가격과 예측결과를 비교하였다. 분석 결과는 날씨 변화의 영향으로 시장에 교란이 발생하였던 시기를 제외하면 비교적 높은 정확도를 보여 주어 모형의 유용성을 시사한다.

자기 유사성 기반 소포우편 단기 물동량 예측모형 연구 (Short-Term Prediction Model of Postal Parcel Traffic based on Self-Similarity)

  • 김은혜;정훈
    • 산업경영시스템학회지
    • /
    • 제43권4호
    • /
    • pp.76-83
    • /
    • 2020
  • Postal logistics organizations are characterized as having high labor intensity and short response times. These characteristics, along with rapid change in mail volume, make load scheduling a fundamental concern. Load analysis of major postal infrastructures such as post offices, sorting centers, exchange centers, and delivery stations is required for optimal postal logistics operation. In particular, the performance of mail traffic forecasting is essential for optimizing the resource operation by accurate load analysis. This paper addresses a traffic forecast problem of postal parcel that arises at delivery stations of Korea Post. The main purpose of this paper is to describe a method for predicting short-term traffic of postal parcel based on self-similarity analysis and to introduce an application of the traffic prediction model to postal logistics system. The proposed scheme develops multiple regression models by the clusters resulted from feature engineering and individual models for delivery stations to reinforce prediction accuracy. The experiment with data supplied by main postal delivery stations shows the advantage in terms of prediction performance. Comparing with other technique, experimental results show that the proposed method improves the accuracy up to 45.8%.

입도분석에 기반한 Deep Neural Network를 이용한 최대 건조 단위중량 예측 모델 평가 (Evaluation of Maximum Dry Unit Weight Prediction Model Using Deep Neural Network Based on Particle Size Analysis)

  • 김명환
    • 한국농공학회논문집
    • /
    • 제65권3호
    • /
    • pp.15-28
    • /
    • 2023
  • The compaction properties of the soil change depending on the physical properties, and are also affected by crushing of the particles. Since the particle size distribution of soil affects the engineering properties of the soil, it is necessary to analyze the material properties to understand the compaction characteristics. In this study, the size of each sieve was classified into four in the particle size analysis as a material property, and the compaction characteristics were evaluated by multiple regression and maximum dry unit weight. As a result of maximum dry unit weight prediction, multiple regression analysis showed R2 of 0.70 or more, and DNN analysis showed R2 of 0.80 or more. The reliability of the prediction result analyzed by DNN was evaluated higher than that of multiple regression, and the analysis result of DNN-T showed improved prediction results by 1.87% than DNN. The prediction of maximum dry unit weight using particle size distribution seems to be applied to evaluate the compacting state by identifying the material characteristics of roads and embankments. In addition, the particle size distribution can be used as a parameter for predicting maximum dry unit weight, and it is expected to be of great help in terms of time and cost of applying it to the compaction state evaluation.

SEM-ANN 2단계 분석에서 예측성능과 변수중요도의 비교연구 (Comparative Study of Prediction Performance and Variable Importance in SEM-ANN Two-stage Analysis)

  • 권순동;조의;방화룡
    • Journal of Information Technology Applications and Management
    • /
    • 제31권1호
    • /
    • pp.11-25
    • /
    • 2024
  • The purpose of this study is to investigate the improvement of prediction performance and changes in variable importance in SEM-ANN two-stage analysis. 366 cosmetics repurchase-related survey data were analyzed and the results were presented. The results of this study are summarized as follows. First, in SEM-ANN two-stage analysis, SEM and ANN models were trained with train data and predicted with test data, respectively, and the R2 was showed. As a result, the prediction performance was doubled from SEM 0.3364 to ANN 0.6836. Looking at this degree of R2 improvement as the effect size f2 of Cohen (1988), it corresponds to a very large effect at 110%. Second, as a result of comparing changes in normalized variable importance through SEM-ANN two-stage analysis, variables with high importance in SEM were also found to have high importance in ANN, but variables with little or no importance in SEM became important in ANN. This study is meaningful in that it increased the validity of the comparison by using the same learning and evaluation method in the SEM-ANN two-stage analysis. This study is meaningful in that it compared the degree of improvement in prediction performance and the change in variable importance through SEM-ANN two-stage analysis.

기후환경 변화에 따른 전기재해 위험도 분석 (Analysis and Risk Prediction of Electrical Accidents Due to Climate Change)

  • 김완석;김영훈;김재혁;오훈
    • 한국산학기술학회논문지
    • /
    • 제19권4호
    • /
    • pp.603-610
    • /
    • 2018
  • 본 산업의 발달 및 화석연료 사용 증가로 인하여 지구온난화 및 기후변화가 가속화되어 기존보다 강도 높은 자연재해가 빈번하게 발생하고 있다. 전기시설물은 옥외에 시설된 경우가 많아 자연재해에 큰 영향을 받아 전기설비 관련 사고가 증가하는 추세이다. 본 논문에서는 국내의 기후변화에 따른 전기화재, 감전사고 및 전기설비사고의 통계 현황을 분석하여 기후변화와 연계한 위험도를 제시한다. 또한, 다양한 지역 별(광역시) 기후조건(온도, 습도)과 연계한 전기재해 데이터 분석을 통하여 각 지역의 월별 전기화재 위험도 분석 모델을 제시하고, 저압, 고압 설비의 자연재해에 대한 사고 위험도를 분석한다. 이러한 지역별, 설비별 위험도 분석 모델을 통하여 기초적인 전기재해 예측 모델을 제시하였다. 따라서 제시한 분석 데이터를 활용하여 향후 각 지역 및 전기설비를 대상으로 전기재해 위험도 예측 맵을 웹사이트나 스마트폰 앱을 통하여 전기안전 서비스를 제안할 수 있으며, 기후변화의 따른 자연재해에 대한 전기사고를 미연에 방지하기 위한 내성기준이나 전기설비의 내구성을 증가시키기 위한 노력이 필요하다.

이어도 종합해양과학기지를 활용한 태풍연구: Part I. 태풍관측의 중요성 및 현황 (Typhoon Researches Using the Ieodo Ocean Research Station: Part I. Importance and Present Status of Typhoon Observation)

  • 문일주;심재설;이동영;이재학;민인기;임관창
    • 대기
    • /
    • 제20권3호
    • /
    • pp.247-260
    • /
    • 2010
  • A recent dramatic increase of natural hazards in the Korean peninsular (KP) due to typhoons have raised necessities for the accurate typhoon prediction. Ieodo ocean research station (IORS) has been constructed in June 2003 at the open ocean where typhoons pass frequently, aiming to observe typhoons before the landfall to the KP and hence to improve the prediction skill. This paper investigates the importance of measurements at the IORS in the typhoon research and forecast. Analysis of the best track data in the N. W. Pacific shows that about one typhoon passes over the IORS per year on the average and 54% of the KP-landfall typhoons during 59 years (1950-2008) passed by the IORS within the range of the 150-km radius. The data observed during the event of typhoons reveals that the IORS can provide useful information for the typhoon prediction prior to the landfall (mainland: before 8-10 hrs, Jeju Island: before 4-6 hrs), which may contribute to improving the typhoon prediction skill and conducting the disaster prevention during the landfall. Since 2003, nine typhoons have influenced the IORS by strong winds above 17m/s. Among them, the typhoon Maemi (0314) was the strongest and brought the largest damages in Korea. The various oceanic and atmospheric observation data at the IORS suggest that the Maemi (0314) has kept the strong intensity until the landfall as passing over warm ocean currents, while the Ewiniar (0603) has weakened rapidly as passing over the Yellow Sea Bottom Cold Water (YSBCW), mainly due to the storm's self-induced surface cooling. It is revealed that the IORS is located in the best place for monitering the patterns of the warm currents and the YSBCW which varies in time and space.