• 제목/요약/키워드: prediction accuracy

검색결과 3,628건 처리시간 0.036초

사용자 유사도 기반 경로 예측 기법 (User Similarity-based Path Prediction Method)

  • 남수민;이석훈
    • 한국정보기술학회논문지
    • /
    • 제17권12호
    • /
    • pp.29-38
    • /
    • 2019
  • 라이프로그를 이용한 경로 예측 기법은 정확한 경로 예측을 위하여 많은 양의 학습 데이터를 요구하며, 학습 데이터가 부족할 경우 경로 예측 성능이 저하된다. 학습 데이터 부족은 사용자의 이동 패턴이 유사한 다른 사용자의 데이터를 이용하여 해결이 가능하다. 따라서 이 논문은 사용자 유사도 기반 경로 예측 알고리즘을 제안한다. 이를 위하여 제안 알고리즘은 경로를 3단 그리드 패턴으로 학습하고 코사인 유사도 기법을 이용하여 사용자 간 유사도를 측정한다. 이후, 측정된 유사도를 학습된 모델에 적용하여 경로를 예측한다. 평가를 위하여 기존 경로 예측 기법들과 제안 기법의 경로 예측 정확도를 측정 및 비교한다. 그 결과, 제안 기법의 정확도는 66.6%로 다른 기법들에 비해 평균 1.8% 더 높은 정확도를 가진 것으로 평가된다.

TANFIS Classifier Integrated Efficacious Aassistance System for Heart Disease Prediction using CNN-MDRP

  • Bhaskaru, O.;Sreedevi, M.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.171-176
    • /
    • 2022
  • A dramatic rise in the number of people dying from heart disease has prompted efforts to find a way to identify it sooner using efficient approaches. A variety of variables contribute to the condition and even hereditary factors. The current estimate approaches use an automated diagnostic system that fails to attain a high level of accuracy because it includes irrelevant dataset information. This paper presents an effective neural network with convolutional layers for classifying clinical data that is highly class-imbalanced. Traditional approaches rely on massive amounts of data rather than precise predictions. Data must be picked carefully in order to achieve an earlier prediction process. It's a setback for analysis if the data obtained is just partially complete. However, feature extraction is a major challenge in classification and prediction since increased data increases the training time of traditional machine learning classifiers. The work integrates the CNN-MDRP classifier (convolutional neural network (CNN)-based efficient multimodal disease risk prediction with TANFIS (tuned adaptive neuro-fuzzy inference system) for earlier accurate prediction. Perform data cleaning by transforming partial data to informative data from the dataset in this project. The recommended TANFIS tuning parameters are then improved using a Laplace Gaussian mutation-based grasshopper and moth flame optimization approach (LGM2G). The proposed approach yields a prediction accuracy of 98.40 percent when compared to current algorithms.

Assessment of genomic prediction accuracy using different selection and evaluation approaches in a simulated Korean beef cattle population

  • Nwogwugwu, Chiemela Peter;Kim, Yeongkuk;Choi, Hyunji;Lee, Jun Heon;Lee, Seung-Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권12호
    • /
    • pp.1912-1921
    • /
    • 2020
  • Objective: This study assessed genomic prediction accuracies based on different selection methods, evaluation procedures, training population (TP) sizes, heritability (h2) levels, marker densities and pedigree error (PE) rates in a simulated Korean beef cattle population. Methods: A simulation was performed using two different selection methods, phenotypic and estimated breeding value (EBV), with an h2 of 0.1, 0.3, or 0.5 and marker densities of 10, 50, or 777K. A total of 275 males and 2,475 females were randomly selected from the last generation to simulate ten recent generations. The simulation of the PE dataset was modified using only the EBV method of selection with a marker density of 50K and a heritability of 0.3. The proportions of errors substituted were 10%, 20%, 30%, and 40%, respectively. Genetic evaluations were performed using genomic best linear unbiased prediction (GBLUP) and single-step GBLUP (ssGBLUP) with different weighted values. The accuracies of the predictions were determined. Results: Compared with phenotypic selection, the results revealed that the prediction accuracies obtained using GBLUP and ssGBLUP increased across heritability levels and TP sizes during EBV selection. However, an increase in the marker density did not yield higher accuracy in either method except when the h2 was 0.3 under the EBV selection method. Based on EBV selection with a heritability of 0.1 and a marker density of 10K, GBLUP and ssGBLUP_0.95 prediction accuracy was higher than that obtained by phenotypic selection. The prediction accuracies from ssGBLUP_0.95 outperformed those from the GBLUP method across all scenarios. When errors were introduced into the pedigree dataset, the prediction accuracies were only minimally influenced across all scenarios. Conclusion: Our study suggests that the use of ssGBLUP_0.95, EBV selection, and low marker density could help improve genetic gains in beef cattle.

Effect of subsurface flow and soil depth on shallow landslide prediction

  • Kim, Minseok;Jung, Kwansue;Son, Minwoo;Jeong, Anchul
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.281-281
    • /
    • 2015
  • Shallow landslide often occurs in areas of this topography where subsurface soil water flow paths give rise to excess pore-water pressures downslope. Recent hillslope hydrology studies have shown that subsurface topography has a strong impact in controlling the connectivity of saturated areas at the soil-bedrock interface. In this study, the physically based SHALSTAB model was used to evaluate the effects of three soil thicknesses (i.e. average soil layer, soil thickness to weathered soil and soil thickness to bedrock soil layer) and subsurface flow reflecting three soil thicknesses on shallow landslide prediction accuracy. Three digital elevation models (DEMs; i.e. ground surface, weathered surface and bedrock surface) and three soil thicknesses (average soil thickness, soil thickness to weathered rock and soil thickness to bedrock) at a small hillslope site in Jinbu, Kangwon Prefecture, eastern part of the Korean Peninsula, were considered. Each prediction result simulated with the SHALSTAB model was evaluated by receiver operating characteristic (ROC) analysis for modelling accuracy. The results of the ROC analysis for shallow landslide prediction using the ground surface DEM (GSTO), the weathered surface DEM and the bedrock surface DEM (BSTO) indicated that the prediction accuracy was higher using flow accumulation by the BSTO and weathered soil thickness compared to results. These results imply that 1) the effect of subsurface flow by BSTO on shallow landslide prediction especially could be larger than the effects of topography by GSTO, and 2) the effect of weathered soil thickness could be larger than the effects of average soil thickness and bedrock soil thickness on shallow landslide prediction. Therefore, we suggest that using BSTO dem and weathered soil layer can improve the accuracy of shallow landslide prediction, which should contribute to more accurately predicting shallow landslides.

  • PDF

협업 필터링 추천에서 대응평균 알고리즘의 예측 성능에 관한 연구 (A study on the Prediction Performance of the Correspondence Mean Algorithm in Collaborative Filtering Recommendation)

  • 이석준;이희춘
    • 경영정보학연구
    • /
    • 제9권1호
    • /
    • pp.85-103
    • /
    • 2007
  • 본 연구의 목적은 좀 더 정확한 고객 선호도 예측을 위한 협업 필터링 알고리즘의 예측 성능을 평가하기 위한 것이다. 고객 선호도 예측의 정확도를 비교하기 위하여 이웃 기반의 협업 필터링 알고리즘과 대응평균 알고리즘에 의한 고객 선호도 예측의 MAE를 비교하였다. 예측 알고리즘의 정확성을 분석하기 위하여 MovieLens 1 Million dataset을 이용하여 실험을 하였다. 각 예측 알고리즘에 사용된 유사도 가중치는 일반적으로 이용되는 피어슨 상관계수와 벡터 유사도를 이용하였으며 분석결과 대응평균 알고리즘의 예측 정확도가 이웃 기반의 협업 필터링 알고리즘의 예측 정확도 보다 우수한 것으로 나타났다. 두 알고리즘에 사용된 유사도 가중치인 피어슨 상관계수와 벡터 유사도는 두 고객이 특정 상품에 대하여 공통으로 평가한 선호도 평가치를 이용하여 계산된다. 이때 공통으로 평가한 선호도 평가치의 개수가 적으면 계산된 유사도 가중치가 과대 평가된다. 과대 평가된 유사도 가중치를 보정하여 고객 선호도 예측의 정확도를 높이기 위하여 기존의 연구에서 고려한 공통 평가 영화의 개수 보다 확대된 범위를 적용하였으며 각 예측 방법에 따라 서로 다른 개선 경향을 파악할 수 있었다.

PM10 예보 정확도 향상을 위한 Deep Neural Network 기반 농도별 분리 예측 모델 (Separation Prediction Model by Concentration based on Deep Neural Network for Improving PM10 Forecast Accuracy)

  • 조경우;정용진;이종성;오창헌
    • 한국정보통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.8-14
    • /
    • 2020
  • 미세먼지의 인체 영향이 밝혀지며 예보정확도 개선에 대한 요구가 증가하고 있다. 이에 기계 학습 기법을 도입하여 예측 정확성을 높이려는 노력이 수행되고 있으나, 저농도 발생 비율이 매우 큰 미세먼지 데이터로 인해 전체 예측 성능이 떨어지는 문제가 있다. 본 논문에서는 PM10 미세먼지 예보 정확도 향상을 위해 농도별 분리 예측 모델을 제안한다. 이를 위해 천안 지역의 기상 및 대기오염 인자를 활용하여 저, 고농도별 예측 모델을 설계하고 전 영역 예측 모델과의 성능 비교를 수행하였다. RMSE, MAPE, 상관계수 및 AQI 정확도를 통한 성능 비교 결과, 전체 기준에서 예측 성능이 향상됨을 확인하였으며, AQI 고농도 예측 성능의 경우 20.62%의 성능 향상이 나타났음을 확인하였다.

Optimization of SWAN Wave Model to Improve the Accuracy of Winter Storm Wave Prediction in the East Sea

  • Son, Bongkyo;Do, Kideok
    • 한국해양공학회지
    • /
    • 제35권4호
    • /
    • pp.273-286
    • /
    • 2021
  • In recent years, as human casualties and property damage caused by hazardous waves have increased in the East Sea, precise wave prediction skills have become necessary. In this study, the Simulating WAves Nearshore (SWAN) third-generation numerical wave model was calibrated and optimized to enhance the accuracy of winter storm wave prediction in the East Sea. We used Source Term 6 (ST6) and physical observations from a large-scale experiment conducted in Australia and compared its results to Komen's formula, a default in SWAN. As input wind data, we used Korean Meteorological Agency's (KMA's) operational meteorological model called Regional Data Assimilation and Prediction System (RDAPS), the European Centre for Medium Range Weather Forecasts' newest 5th generation re-analysis data (ERA5), and Japanese Meteorological Agency's (JMA's) meso-scale forecasting data. We analyzed the accuracy of each model's results by comparing them to observation data. For quantitative analysis and assessment, the observed wave data for 6 locations from KMA and Korea Hydrographic and Oceanographic Agency (KHOA) were used, and statistical analysis was conducted to assess model accuracy. As a result, ST6 models had a smaller root mean square error and higher correlation coefficient than the default model in significant wave height prediction. However, for peak wave period simulation, the results were incoherent among each model and location. In simulations with different wind data, the simulation using ERA5 for input wind datashowed the most accurate results overall but underestimated the wave height in predicting high wave events compared to the simulation using RDAPS and JMA meso-scale model. In addition, it showed that the spatial resolution of wind plays a more significant role in predicting high wave events. Nevertheless, the numerical model optimized in this study highlighted some limitations in predicting high waves that rise rapidly in time caused by meteorological events. This suggests that further research is necessary to enhance the accuracy of wave prediction in various climate conditions, such as extreme weather.

중풍 변증 모델에 의한 진단 정확률과 예측률 비교 (Comparison of Diagnostic Accuracy and Prediction Rate for between two Syndrome Differentiation Diagnosis Models)

  • 강병갑;차민호;이정섭;김노수;최선미;오달석;김소연;고미미;김정철;방옥선
    • 동의생리병리학회지
    • /
    • 제23권5호
    • /
    • pp.938-941
    • /
    • 2009
  • In spite of abundant clinical resources of stroke patients, the objective and logical data analyses or diagnostic systems were not established in oriental medicine. In the present study we tried to develop the statistical diagnostic tool discriminating the subtypes of oriental medicine diagnostic system, syndrome differentiation (SD). Discriminant analysis was carried out using clinical data collected from 1,478 stroke patients with the same subtypes diagnosed identically by two clinical experts with more than 3 year experiences. Numerical discriminant models were constructed using important 61 symptom and syndrome indices. Diagnostic accuracy and prediction rate of 5 SD subtypes: The overall diagnostic accuracy of 5 SD subtypes using 61 indices was 74.22%. According to subtypes, the diagnostic accuracy of "phlegm-dampness" was highest (82.84%), and followed by "qi-deficiency", "fire/heat", "static blood", and "yin-deficiency". On the other hand, the overall prediction rate was 67.12% and that of qi-deficiency was highest (73.75%). Diagnostic accuracy and prediction rate of 4 SD subtypes: The overall diagnostic accuracy and prediction rate of 4 SD subtypes except "static blood" were 75.06% and 71.63%, respectively. According to subtypes, the diagnostic accuracy and prediction rate was highest in the "phlegm-dampness" (82.84%) and qi-deficiency (81.69%), respectively. The statistical discriminant model of constructed using 4 SD subtypes, and 61 indices can be used in the field of oriental medicine contributing to the objectification of SD.

LSTM Model-based Prediction of the Variations in Load Power Data from Industrial Manufacturing Machines

  • Rita, Rijayanti;Kyohong, Jin;Mintae, Hwang
    • Journal of information and communication convergence engineering
    • /
    • 제20권4호
    • /
    • pp.295-302
    • /
    • 2022
  • This paper contains the development of a smart power device designed to collect load power data from industrial manufacturing machines, predict future variations in load power data, and detect abnormal data in advance by applying a machine learning-based prediction algorithm. The proposed load power data prediction model is implemented using a Long Short-Term Memory (LSTM) algorithm with high accuracy and relatively low complexity. The Flask and REST API are used to provide prediction results to users in a graphical interface. In addition, we present the results of experiments conducted to evaluate the performance of the proposed approach, which show that our model exhibited the highest accuracy compared with Multilayer Perceptron (MLP), Random Forest (RF), and Support Vector Machine (SVM) models. Moreover, we expect our method's accuracy could be improved by further optimizing the hyperparameter values and training the model for a longer period of time using a larger amount of data.

Advanced Pixel Value Prediction Algorithm using Edge Characteristics in Image

  • Jung, Soo-Mok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권1호
    • /
    • pp.111-115
    • /
    • 2020
  • In this paper, I proposed an effective technique for accurately predicting pixel values using edge components. Adjacent pixel values are similar to each other. That is, generally, similarity exists between adjacent pixels in an image. In the proposed algorithm, edge components are detected using the surrounding pixels in the first step, and pixel values are estimated using the edge components in the second step. Therefore, the prediction accuracy of the pixel value is improved and the prediction error is reduced. Pixel value prediction is a necessary technique for various applications such as image magnification and confidential data concealment. Experimental results show that the proposed method has higher prediction accuracy and fewer prediction error. Therefore, the proposed technique can be effectively used for applications such as image magnification and confidential data concealment.