• 제목/요약/키워드: predicted deviation

검색결과 294건 처리시간 0.021초

대량 데이터를 위한 제한거절 기반의 회귀부스팅 기법 (Boosted Regression Method based on Rejection Limits for Large-Scale Data)

  • 권혁호;김승욱;최동훈;이기천
    • 대한산업공학회지
    • /
    • 제42권4호
    • /
    • pp.263-269
    • /
    • 2016
  • The purpose of this study is to challenge a computational regression-type problem, that is handling large-size data, in which conventional metamodeling techniques often fail in a practical sense. To solve such problems, regression-type boosting, one of ensemble model techniques, together with bootstrapping-based re-sampling is a reasonable choice. This study suggests weight updates by the amount of the residual itself and a new error decision criterion which constructs an ensemble model of models selectively chosen by rejection limits. Through these ideas, we propose AdaBoost.RMU.R as a metamodeling technique suitable for handling large-size data. To assess the performance of the proposed method in comparison to some existing methods, we used 6 mathematical problems. For each problem, we computed the average and the standard deviation of residuals between real response values and predicted response values. Results revealed that the average and the standard deviation of AdaBoost.RMU.R were improved than those of other algorithms.

An Application of K-$\varepsilon$ Turbulence Model for Predicting Effect of a Rectanguler Obstacle with Heat Flux in a Solt-Ventilated Enclosure on Air Flow

  • 최홍림;김현태;김우중
    • 한국농공학회지
    • /
    • 제34권E호
    • /
    • pp.30-44
    • /
    • 1992
  • A modification of the TEACH-like computer program based on the k-$\varepsilon$ turbulence transport was applied for predicting air mixing patterns and temperature distributions in a rectangular, slot-ventilated enclosure having obstructions ; a rectangular obstacle with heat flux, solid walls separates the passage and the pig pens, and purlins beneath the ceiling. Air flow patterns were calculated for the cases with and without the purlin, extending 300mm beneath the ceiling. Comparisons of prediction data of Randall & Battams(1976) showed air flow pattern predicted well for the case without the purlin. Heat was accumulated at the corner of the left side of the solid wall and the right-upper region of the simulated pigs. However the air distribution pattern was completely different from data for the case with the purlin. The deviation from the observation may be attributed to the difference of the geometric configuation. Exploring the cause of the deviation should be conducted in a further study. Temperature stratification was also observed due to incomplete mixing. The obstruction in the route of the inlet air jet at inlet should be avoided since most of kinetic energy dissipates at the abstacle duet to impingement.

  • PDF

Thermal creep behavior of CZ cladding under biaxial stress state

  • Jin, Xin;Lin, Yuyu;Zhang, Libin
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2901-2909
    • /
    • 2020
  • Thermal creep is a key property of zircaloy cladding. CZ developed by CGN is a new zircaloy used as PWR fuel cladding. This research is devoted to investigating the thermal creep behavior of CZ and build the thermal creep model of CZ. Twenty internal pressure creep tests were conducted, and the ranges of temperature and Tresca stress were 320-430 ℃ and 70-300 MPa, respectively. Real-time creep data were analyzed by separating primary creep and steady-state creep. Based on Soderberg model and creep test data, CZ thermal creep model is derived. As a whole, the mean value and the standard deviation of P/M of CZ saturated primary creep strain are very close to these from steady-state creep rate, however, the predictive effect of primary creep is less satisfactory. Four conditions, where there exists large deviation between predicted values and test data, are 320 ℃ and 300 MPa, 350 ℃ and 190 MPa, 380 ℃ and 160 MPa, 380 ℃ and 190 MPa, respectively. As primary creep was much smaller than steady-state creep in long-time operation, the thermal creep model built can be applied to predict the thermal creep behavior of CZ cladding.

HORIZON EXPANSION OF THERMAL-HYDRAULIC ACTIVITIES INTO HTGR SAFETY ANALYSIS INCLUDING GAS-TURBINE CYCLE AND HYDROGEN PLANT

  • No, Hee-Cheon;Yoon, Ho-Joon;Kim, Seung-Jun;Lee, Byeng-Jin;Kim, Ji-Hwang;Kim, Hyeun-Min;Lim, Hong-Sik
    • Nuclear Engineering and Technology
    • /
    • 제41권7호
    • /
    • pp.875-884
    • /
    • 2009
  • We present three nuclear/hydrogen-related R&D activities being performed at KAIST: air-ingressed LOCA analysis code development, gas turbine analysis tool development, and hydrogen-production system analysis model development. The ICE numerical technique widely used for the safety analysis of water-reactors is successfully implemented into GAMMA, with which we solve the basic equations for continuity, momentum conservation, energy conservation of the gas mixture, and mass conservation of 6 species (He, N2, O2, CO, CO2, and H2O). GAMMA has been extensively validated using data from 14 test facilities. We developed a tool to predict the characteristics of HTGR helium turbines based on the throughflow calculation with a Newton-Raphson method that overcomes the weakness of the conventional method based on the successive iteration scheme. It is found that the current method reaches stable and quick convergence even under the off-normal condition with the same degree of accuracy. The dynamic equations for the distillation column of HI process are described with 4 material components involved in the HI process: H2O, HI, I2, H2. For the HI process we improved the Neumann model based on the NRTL (Non-Random Two-Liquid) model. The improved Neumann model predicted a total pressure with 8.6% maximum relative deviation from the data and 2.5% mean relative deviation, and liquid-liquid-separation with 9.52% maximum relative deviation from the data.

An efficient robust cost optimization procedure for rice husk ash concrete mix

  • Moulick, Kalyan K.;Bhattacharjya, Soumya;Ghosh, Saibal K.;Shiuly, Amit
    • Computers and Concrete
    • /
    • 제23권6호
    • /
    • pp.433-444
    • /
    • 2019
  • As rice husk ash (RHA) is not produced in controlled manufacturing process like cement, its properties vary significantly even within the same lot. In fact, properties of Rice Husk Ash Based Concrete (RHABC) are largely dictated by uncertainty leading to huge deviations from their expected values. This paper proposes a Robust Cost Optimization (RCO) procedure for RHABC, which minimizes such unwanted deviation due to uncertainty and provides guarantee of achieving desired strength and workability with least possible cost. The RCO simultaneously minimizes cost of RHABC production and its deviation considering feasibility of attaining desired strength and workability in presence of uncertainty. RHA related properties have been modeled as uncertain-but-bounded type as associated probability density function is not available. Metamodeling technique is adopted in this work for generating explicit expressions of constraint functions required for formulation of RCO. In doing so, the Moving Least Squares Method is explored in place of conventional Least Square Method (LSM) to ensure accuracy of the RCO. The efficiency by the proposed MLSM based RCO is validated by experimental studies. The error by the LSM and accuracy by the MLSM predictions are clearly envisaged from the test results. The experimental results show good agreement with the proposed MLSM based RCO predicted mix properties. The present RCO procedure yields RHABC mixes which is almost insensitive to uncertainty (i.e., robust solution) with nominal deviation from experimental mean values. At the same time, desired reliability of satisfying the constraints is achieved with marginal increment in cost.

Chemical Equilibrium Modeling for Magnetite-Packed Crevice Chemistry in a Nuclear Steam Generator

  • Bahn, Chi-Bum;Rhee, In-Hyoung;Hwang, Il-Soon;Park, Byung-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권11호
    • /
    • pp.1783-1789
    • /
    • 2005
  • Modeling of a steam generator crevice in a nuclear power system needs to take into account both thermalhydraulic and chemical phenomena. As a first step towards developing a reliable model, a chemical equilibrium model was developed to predict chemical speciation in a magnetite-packed crevice by adopting the “tableau” method. The model was benchmarked with the available experimental data and the maximum deviation did not exceed two orders of magnitude. The developed model was applied to predict the chemical speciation in a magnetite-packed crevice. It was predicted that caustic environment was developed by the concentration of NaOH and the dissolution of magnetite. The model indicated that the dominant aqueous species of iron in the caustic crevice was $FeO_2\;^-$. The increase of electrochemical corrosion potential observed in the experiment was rationalized by the decrease of dissolved hydrogen concentration due to a boiling process. It was predicted that under the deaerated condition magnetite was oxidized to hematite.

Toluene, Methylcyclohexane, n-heptane 그리고 Ethylbenzene 이성분 혼합계에 대한 101.3 kPa에서의 인화점 측정 (Measurement of Flash Point for Binary Mixtures of Toluene, Methylcyclohexane, n-heptane and Ethylbenzene at 101.3 kPa)

  • 황인찬;인세진
    • 한국화재소방학회논문지
    • /
    • 제31권3호
    • /
    • pp.19-24
    • /
    • 2017
  • 인화점은 산업현장에서 화재 및 폭발의 위험성을 결정하는데 사용되는 중요한 지표의 하나로 안정성 평가 시 많이 사용되고 있다. 따라서 본 연구는 고무제조 공정에서 주로 쓰이는 이성분계 혼합물 중 {toluene+ethylbenzene}, {methlycyclohenxane+ethylbenzene} 그리고 {n-heptane+ethylbenzene} 대한 인화점을 101.3 kPa에서 SETA 밀폐식 인화점 측정기를 이용하여 측정하였다. 각 이성분계에 대하여 Raoult's의 법칙, Wilson, NRTL 및 UNIQUAC 파라미터를 이용하여 혼합물에 대한 인화점 예측하고 실험 결과와 비교하였다. 비교 결과 모든 예측값과 실험값은 유사한 값을 보였고 편차가 1.74 K이내의 결과를 보였다.

Shear Capacity of Reinforced Concrete Beams Using Neural Network

  • Yang, Keun-Hyeok;Ashour, Ashraf F.;Song, Jin-Kyu
    • International Journal of Concrete Structures and Materials
    • /
    • 제1권1호
    • /
    • pp.63-73
    • /
    • 2007
  • Optimum multi-layered feed-forward neural network (NN) models using a resilient back-propagation algorithm and early stopping technique are built to predict the shear capacity of reinforced concrete deep and slender beams. The input layer neurons represent geometrical and material properties of reinforced concrete beams and the output layer produces the beam shear capacity. Training, validation and testing of the developed neural network have been achieved using 50%, 25%, and 25%, respectively, of a comprehensive database compiled from 631 deep and 549 slender beam specimens. The predictions obtained from the developed neural network models are in much better agreement with test results than those determined from shear provisions of different codes, such as KBCS, ACI 318-05, and EC2. The mean and standard deviation of the ratio between predicted using the neural network models and measured shear capacities are 1.02 and 0.18, respectively, for deep beams, and 1.04 and 0.17, respectively, for slender beams. In addition, the influence of different parameters on the shear capacity of reinforced concrete beams predicted by the developed neural network shows consistent agreement with those experimentally observed.

축류형 송풍기의 성능 및 소음 예측을 위한 전산 프로그램의 개발 및 적용 (Development and Application of the Computer Program for the Performance and Noise Prediction of Axial Flow Fan)

  • 정동규;홍순성;이찬
    • 한국유체기계학회 논문집
    • /
    • 제3권3호
    • /
    • pp.31-40
    • /
    • 2000
  • A computer program is developed for the prediction of the aerodynamic performance and the noise characteristics in the basic design step of axial flow fan. The flow field and the performance of fan are analyzed by using the streamline curvature computing scheme with total pressure loss and flow deviation models. Fan noise is assumed to be generated due to the pressure fluctuations induced by wake vortices of fan blades and to radiate via dipole distribution. The vortex-induced fluctuating pressure on blade surface is calculated by combining thin airfoil theory and the predicted flow field data. The predicted performances, sound pressure level and noise directivity patterns of fan by the present method are favorably compared with the test data of actual fan. Furthermore, the present method is shown to be very useful in optimizing design variables of fan with high efficiency and low noise level.

  • PDF

성능 및 소음 해석 기능이 수반된 전산화된 축류 송풍기 설계 체제 (A Computerized Axial Flow Fan Design System for Noise and Performance Analysis)

  • 정동규;노준구;서제영;이찬
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.37-42
    • /
    • 2001
  • A computerized axial flow fan design system is developed with the capabilities for predicting the aerodynamic performance and the noise characteristics of fan. In the present study, the basic fan blading design is made by combining vortex distribution scheme with camber line design, airfoil selection, blade thickness distribution and stacking of blade elements. With the designed fan blade geometry, the through-flow field and the performance of fan are analyzed by using the streamline curvature computing scheme with spanwise total pressure loss and flow deviation models. Fan noise is assumed to be generated due to the pressure fluctuation induced by wake vortices of fan blades and to radiate as dipole distribution. The vortex-induced fluctuating pressure on blade surface is calculated by combining thin airfoil theory and the predicted flow field data. The predicted performances, sound pressure level and noise directivity patterns of fan by the present method are favorably compared with the test data of actual fans. Furthermore, the present method is shown to be very useful in designing the blade geometry of new fan and optimizing design variables of the fan to achieve higher efficiency and lower noise level.

  • PDF