• 제목/요약/키워드: predicted deviation

검색결과 292건 처리시간 0.021초

다채널 알루미늄 평판관내 R22와 R134a의 흐름 응축 열전달 성능 비교 (A Comparison of Flow Condensation HTCs of R22 Alternatives in the Multi-Channel Tube)

  • 서영호;박기정;정동수
    • 설비공학논문집
    • /
    • 제16권6호
    • /
    • pp.589-598
    • /
    • 2004
  • Flow condensation heat transfer coefficients (HTCs) of R22 and R134a were measured on a horizontal 9 hole aluminum multi-channel tube. The main test section in the refrigerant loop was made of a flat multi-channel aluminum tube of 1.4 mm hydraulic diameter and 0.53 m length. Refrigerant was cooled by passing cold water through an annulus surrounding the test section. Data were obtained in the vapor qualities of 0.1∼0.9 at mass flux of 200∼400 kg/$m^2$s and heat flux of 7.3∼7.7 ㎾/$m^2$ at the saturation temperature of 4$0^{\circ}C$. All popular correlations in single-phase subcooled liquid and flow condensation originally developed for large single tubes predicted the present data of the flat tube within 20% deviation when effective heat transfer area is used in determining experimental data. This suggests that there is little change in flow characteristics and patterns when the tube diameter is reduced down to 1.4 mm diameter range. Thermal insulation for the outer tube section surrounding the test tube for the transport of heat transfer fluid is very important in fluid heat-ing or cooling type heat transfer experimental apparatus.

DEVELOPMENT OF A METHOD FOR CONTROLLING GAS CONCENTRATION FOR USE IN C.A EXPERIMENTS

  • Yun, H.S.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.662-669
    • /
    • 2000
  • Based on the viscous flow characteristics of gas through capillary tube, a simple and low cost system was developed for controlling gas concentration for use in C.A experiments. The gas flow rate through capillary tube had a linear relationship with pressure, $(length)^{-1}$ and $(radius)^4$ of capillary tube, which agreed well with Hagen-Poiseuille's law. The developed system could control the gas concentration in storage chamber within ${\pm}0.3%$ deviation compared to the preset concentration. The required time for producing target gas concentration in storage chamber was exactly predicted by the model used in this study, and it required much longer time than the calculated time which divided the volume of chamber by flow rate. Therefore, for producing target gas concentration as quickly as possible, it needs to supply higher flow rate of gas during the initial stage of experiment when gas concentration in storage chamber has not reached at target value. It appeared that the developed system was very useful for C.A experiments. Because one could decide a desired flow rate by the prediction model, control flow rate freely and easily by changing pressure in the pressure-regulating chamber and the accuracy was high.

  • PDF

Grade 91 강의 장시간 크리프 수명 예측 방법 (Long-term Creep Life Prediction Methods of Grade 91 Steel)

  • 박재영;김우곤;;김선진;장진성
    • 동력기계공학회지
    • /
    • 제19권5호
    • /
    • pp.45-51
    • /
    • 2015
  • Grade 91 steel is used for the major structural components of Generation-IV reactor systems such as a very high temperature reactor (VHTR) and sodium-cooled fast reactor (SFR). Since these structures are designed for up to 60 years at elevated temperatures, the prediction of long-term creep life is very important to determine an allowable design stress of elevated temperature structural component. In this study, a large body of creep rupture data was collected through world-wide literature surveys, and using these data, the long-term creep life was predicted in terms of three methods: Larson-Miller (L-M), Manson-Haferd (M-H) and Wilshire methods. The results for each method was compared using the standard deviation of error. The L-M method was overestimated in the longer time of a low stress. The Wilshire method was superior agreement in the long-term life prediction to the L-M and M-H methods.

초고온가스로 압력용기용 Gr. 91 강의 장시간 크리프 수명 예측 방법 개선 (Improvement of Long-term Creep Life Prediction Method of Gr. 91 steel for VHTR Pressure Vessel)

  • 박재영;김우곤;;김선진;김민환
    • 한국압력기기공학회 논문집
    • /
    • 제10권1호
    • /
    • pp.64-69
    • /
    • 2014
  • Gr. 91 steel is used for the major structural components of Generation-IV reactor systems, such as a very high temperature reactor(VHTR) and sodium-cooled fast reactor(SFR). Since these structures are designed for up to 60 years at elevated temperatures, the prediction of long-term creep life is important for a design application of Gr. 91 steel. In this study, a number of creep rupture data were collected through world-wide literature surveys, and using these data, the long-term creep life was predicted in terms of three methods: the single-C method in Larson-Miller(L-M) parameter, multi-C constant method in the L-M parameter, and a modified method("sinh" equation) in the L-M parameter. The results of the creep-life prediction were compared using the standard deviation of error value, respectively. Modified method proposed by the "sinh" equation revealed better agreement in creep life prediction than the single-C L-M method.

Chance-constrained Scheduling of Variable Generation and Energy Storage in a Multi-Timescale Framework

  • Tan, Wen-Shan;Abdullah, Md Pauzi;Shaaban, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1709-1718
    • /
    • 2017
  • This paper presents a hybrid stochastic deterministic multi-timescale scheduling (SDMS) approach for generation scheduling of a power grid. SDMS considers flexible resource options including conventional generation flexibility in a chance-constrained day-ahead scheduling optimization (DASO). The prime objective of the DASO is the minimization of the daily production cost in power systems with high penetration scenarios of variable generation. Furthermore, energy storage is scheduled in an hourly-ahead deterministic real-time scheduling optimization (RTSO). DASO simulation results are used as the base starting-point values in the hour-ahead online rolling RTSO with a 15-minute time interval. RTSO considers energy storage as another source of grid flexibility, to balance out the deviation between predicted and actual net load demand values. Numerical simulations, on the IEEE RTS test system with high wind penetration levels, indicate the effectiveness of the proposed SDMS framework for managing the grid flexibility to meet the net load demand, in both day-ahead and real-time timescales. Results also highlight the adequacy of the framework to adjust the scheduling, in real-time, to cope with large prediction errors of wind forecasting.

Optimal Image Quality Assessment based on Distortion Classification and Color Perception

  • Lee, Jee-Yong;Kim, Young-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권1호
    • /
    • pp.257-271
    • /
    • 2016
  • The Structural SIMilarity (SSIM) index is one of the most widely-used methods for perceptual image quality assessment (IQA). It is based on the principle that the human visual system (HVS) is sensitive to the overall structure of an image. However, it has been reported that indices predicted by SSIM tend to be biased depending on the type of distortion, which increases the deviation from the main regression curve. Consequently, SSIM can result in serious performance degradation. In this study, we investigate the aforementioned phenomenon from a new perspective and review a constant that plays a big role within the SSIM metric but has been overlooked thus far. Through an experimental study on the influence of this constant in evaluating images with SSIM, we are able to propose a new solution that resolves this issue. In the proposed IQA method, we first design a system to classify different types of distortion, and then match an optimal constant to each type. In addition, we supplement the proposed method by adding color perception-based structural information. For a comprehensive assessment, we compare the proposed method with 15 existing IQA methods. The experimental results show that the proposed method is more consistent with the HVS than the other methods.

Prediction of elastic modulus of steel-fiber reinforced concrete (SFRC) using fuzzy logic

  • Gencoglu, Mustafa;Uygunoglu, Tayfun;Demir, Fuat;Guler, Kadir
    • Computers and Concrete
    • /
    • 제9권5호
    • /
    • pp.389-402
    • /
    • 2012
  • In this study, the modulus of elasticity of low, normal and high strength steel fiber reinforced concrete has been predicted by developing a fuzzy logic model. The fuzzy models were formed as simple rules using only linguistic variables. A fuzzy logic algorithm was devised for estimating the elastic modulus of SFRC from compressive strength. Fibers used in all of the mixes were made of steel, and they were in different volume fractions and aspect ratios. Fiber volume fractions of the concrete mixtures have changed between 0.25%-6%. The results of the proposed approach in this study were compared with the results of equations in standards and codes for elastic modulus of SFRC. Error estimation was also carried out for each approach. In the study, the lowest error deviation was obtained in proposed fuzzy logic approach. The fuzzy logic approach was rather useful to quickly and easily predict the elastic modulus of SFRC.

자동차 에어컨 컴퓨터 시뮬레이션 (Computer Simulation of Automobile Air-Conditioners)

  • 김학준;정동수;김종보;김기효;강정길
    • 설비공학논문집
    • /
    • 제8권2호
    • /
    • pp.240-253
    • /
    • 1996
  • The refrigeration cycle of automobile air-conditioners is simulated in an effort to provide a computational tool for optimum thermodynamic design. In the simulation, thermodynamic and heat transfer analysis was performed for the four major components : evaporator, condenser, compressor, and expansion valve. Effectiveness-NTU method was used for modeling both evaporator and condenser. The evaporator was divied into many subgrids and simultaneous cooling and dehumidifying analysis was performed for each grid to predict the performance accurately. Blance equations were used to model the compressor instead of using the compressor map. The performance of each component was checked against the measured data with CFC-12. Then, all the components were combined to yield the total system performance. Predicted cycle points were compared against the measured data with HFC-134a and the deviation was found to be less than 5% for all data. Finally, the system model was used to predict the performance of CFC-12 and HFC-134a for comparison. The results were very reasonable as compared to the trend deduced from the measured data.

  • PDF

SIEVING NONLINEAR INTERNAL WAVES IN SATELLITE IMAGES

  • Liu, Cho-Teng;Chao, Yen-Hsiang;Hsu, Ming-Kuang;Chen, Hsien-Wen
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.820-823
    • /
    • 2006
  • Nonlinear internal waves (NLIW) were studied as a unusual phenomena in the ocean decades ago. As the quality, quantity and variety of satellite images improve over decades, it is founded that NLIW is a ubiquitous phenomenon. Over the continental shelf of northern South China Sea (SCS), both optical and microwave images show that there are trains of NLIW packets near Dongsha Atoll (20.7N, 116.8E). Each packet contains several NLIW fronts. These NLIW packets are nearly parallel to each other and they are refracted, reflected or diffracted by the change of ocean bottom topography. Based on Korteweg de Vries (KdV) theory and the assumption that the bright/dark lines in the satellite images are centers of convergence/divergence of NLIW fronts, one may (1) sort NLIW packets in the same satellite image into groups of the same source, but generated at different tidal cycles, (2) relate NLIW packets in consecutive satellite images of one day apart, (3) locating faint signals of NLIW fronts in a satellite image. The NLIWs travel more than 100 km/day near Dongsha Atoll, with higher speed in deeper water. The bias and standard deviation of predicted location of NLIW front from its true location is about 1% and 5.1%, respectively.

  • PDF

A Theoretical and Experimental Study of the Steam Condensation Effect on the CCFL in Nearly Horizontal Two- phase Flow

  • Chun, Moon-Hyun;Yu, Seon-Oh
    • Nuclear Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.618-630
    • /
    • 1999
  • An analytical model that includes the steam condensation effect has been derived and a parametric study has been performed. In addition, a series of experiments were performed and a total of 34 experimental data for the onset of CCFL in nearly horizontal countercurrent two-phase How have been obtained for various flow rates of water. Comparisons of the present CCFL data with slug formation models show that the agreement between the present as well as the existing model and the data is about the same. However, the deviation between the Taitel and Dukler's model predictions and the data is the largest when if j$_{f}$<0.04 m/s. A parametric study of the effect of the steam condensation using the present model shows that, when all local conditions are similar, the model predicted local gas velocities that cause the onset of flooding are slightly lower when condensation occurred. Based on the visual observation and the evaluation of the present work, it has been concluded that the criterion derived for the onset of slug flow can be directly used to predict the onset of inner flooding in nearly horizontal two-phase flow within the experimental ranges of the present work.

  • PDF