• Title/Summary/Keyword: predator-prey interaction

Search Result 13, Processing Time 0.031 seconds

Effectiveness and Ecological Implications of Anuran Defenses against Snake Predators

  • In-Ho Choi;Sung Ho Lee;Robert E. Ricklefs
    • Animal cells and systems
    • /
    • v.3 no.3
    • /
    • pp.247-252
    • /
    • 1999
  • The aim of this study was to characterize antipredator tactics of anurans and to evaluate the effectiveness of these tactics for predator avoidance in real confrontations. Two types of experiments were conducted. In one experiment, one predator and one prey were placed together for one hour in a small confined space (one-to-one interaction). In another experiment, one predator and several prey were placed together for one day in a large enclosure in a field (field-based interaction). The prey consisted of three anuran species, Rana nigromaculata, R. rugosa, and Bombina orientalls: a snake species, Rhabdophis tigrinus tigrinus, was used as a predator. Results of both experiments demonstrated a range in antipredator responses of the frogs, from toxicity and warning coloration, coupled with slow responses in Bombina to little (or only slight) toxicity, crypsis, and fast take-off responses to the predator in the ranids. oth ranid species exhibited lower survival(57%) than Bombina (95%) in the field-based interaction, suggesting that motor responses of the palatable prey due to attacks of the predator ultimately limited their survival. The jumping of the ranids increased the activity of the predator, which became more likely to strike. Simple crouching(seen in R. rugosa and B. orientalis) and chemical defense (in Bombina) reduced predatory attacks.

  • PDF

DYNAMICS OF A PREY-PREDATOR INTERACTION WITH HASSELL-VARLEY TYPE FUNCTIONAL RESPONSE AND HARVESTING OF PREY

  • BHATTACHARYYA, ANINDITA;MONDAL, ASHOK;PAL, A.K.;SINGH, NIKHITA
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.1199-1215
    • /
    • 2022
  • This article aims to study the dynamical behaviours of a two species model in which non-selective harvesting of a prey-predator system by using a reasonable catch-rate function instead of usual catch-per-unit-effort hypothesis is used. A system of two ordinary differential equations(ODE's) has been proposed and analyzed with the predator functional response to prey density is considered as Hassell-Varley type functional responses to study the dynamics of the system. Positivity and boundedness of the system are studied. We have discussed the existence of different equilibrium points and stability of the system at these equilibrium points. We also analysed the system undergoes a Hopf-bifurcation around interior equilibrium point for a various parametric values which has very significant ecological impacts in this work. Computer simulation are carried out to validate our analytical findings. The biological implications of analytical and numerical findings are discussed critically.

INSTABILITY IN A PREDATOR-PREY MODEL WITH DIFFUSION

  • Aly, Shaban
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.1
    • /
    • pp.21-29
    • /
    • 2009
  • This paper treats the conditions for the existence and stability properties of stationary solutions of a predator-prey interaction with self and cross-diffusion. We show that at a certain critical value a diffusion driven instability occurs, i.e. the stationary solution stays stable with respect to the kinetic system (the system without diffusion) but becomes unstable with respect to the system with diffusion and that Turing instability takes place. We note that the cross-diffusion increase or decrease a Turing space (the space which the emergence of spatial patterns is holding) compared to the Turing space with self-diffusion, i.e. the cross-diffusion response is an important factor that should not be ignored when pattern emerges.

  • PDF

Exploring the Stability of Predator-Prey Ecosystem in Response to Initial Population Density (초기 개체군 밀도가 포식자-피식자 생태계 안정성에 미치는 영향)

  • Cho, Jung-Hee;Lee, Sang-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • The ecosystem is the complex system consisting of various biotic and abiotic factors and the factors interact with each other in the hierarchical predator-prey relationship. Since the competitive relation spatiotemporally occurs, the initial state of population density and species distribution are likely to play an important role in the stability of the ecosystem. In the present study, we constructed a lattice model to simulate the three-trophic ecosystem (predatorprey- plant) and using the model, explored how the ecosystem stability is affected by the initial density. The size of lattice space was $L{\times}L$, (L=100) with periodic boundary condition. The initial density of the plant was arbitrarily set as the value of 0.2. The simulation result showed that predator and prey coexist when the density of predator is less than or equal to 0.4 and the density of prey is less than or equal to 0.5. On the other hand, when the predator density is more than or equal to 0.5 and the density of prey is more than or equal to 0.6, both of predator and prey were extinct. In addition, we found that the strong nonlinearity in the interaction between species was observed in the border area between the coexistence and extinction in the species density space.

Antipredator response of Korean clawed salamander (Onychodactylus koreanus) larvae to odors of potential predators (Chinese minnow, Rhynchocypris oxycephalus and Korean freshwater crayfish, Cambaroides similis)

  • Jiyeon Cheon;Jongsun Kim;Hyerim Kwon;Jiho Park;Daesik Park
    • Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.214-221
    • /
    • 2024
  • Background: To identify and avoid predators, amphibians rely on chemical cues. Onychodactylus koreanus undergo two to three years of the larval stage in mountainous streams, where they encounter various predators. We aimed to identify the potential predators of O. koreanus larvae based on their antipredator responses to predator odors. Additionally, we examined whether the response was innate or can be strengthened by predator olfactory learning. Results: In Experiment 1, O. koreanus larvae exhibited a substantial antipredator response to Chinese minnow (Rhynchocypris oxycephalus) odor but not to Korean freshwater crayfish (Cambaroides similis) odor. In Experiment 2, O. koreanus larvae, who did not previously expose to R. oxycephalus odor, demonstrated a substantial antipredator response to it. Experiment 3 indicated that predator olfactory learning of R. oxycephalus did not enhance the antipredator response of the larvae. Conclusions: Rhynchocypris oxycephalus could prey on O. koreanus larvae, whose antipredator response to R. oxycephalus odor is innate and not enhanced by olfactory learning. Further investigation into the olfactory system of this species may provide insights into the life cycle of O. koreanus, uncovering hidden underground breeding sites and unknown breeding periods.

Application of an Augmented Predator-Prey Model to the Population Dynamics of Roe Deer in Jeju (제주도 노루의 개체수 관리를 위한 확장적 피식-포식모형의 적용에 관한 연구)

  • Jeon, Dae-Uk;Kim, Doa-Hoon
    • Korean System Dynamics Review
    • /
    • v.12 no.2
    • /
    • pp.95-126
    • /
    • 2011
  • This paper aims at developing a System Dynamics model with an augmented predator-prey interaction structure to deal with the population management of roe deer in Jeju, Korea. Although people still regard the creature as one of the important tourist attractions, there has been much debate on the issues of the appropriateness of the population size of roe deers because they have been stigmatized as crop damagers, and roadkill/poaching victims due to their natural habit to move around from the top mountain to the lowland of the island. The model is therefore to incorporate these migrating and grazing behaviors into an augmented Lotka-Volterra model coupling roe deer population in both parts of the island to that of predators and preys of the species. The authors also provide a comprehensive set of dynamic hypotheses and relevant CLD/SFD to understand the population dynamics of roe deer and co-evolving species and perform the steady-state analysis of the proposed equation system to verify the model behavior of the numerical example lastly presented in this paper.

  • PDF

Applicability of Next-Generation Sequencing for Analysis of Stomach Contents in Fish (Next-Generation Sequencing을 활용한 어류 위 내용물 분석의 적용 가능성)

  • Chae-Jin Park;Seonbin Yun;Hyeon-Sik Lee;Seoyun Jang;Kang-Hui Kim;Donghyun Hong;Gea-Jae Joo
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.1
    • /
    • pp.104-125
    • /
    • 2023
  • The predator-prey interaction in freshwater ecosystems is a crucial area in the ecological study field and one of example to find such interaction is to investigate stomach contents. However, traditional method through visual inspection often induce misidentification, as it depends critically on intactness of physically visible data. In this study, we utilized Next-Generations Sequencing (NGS) technology to test the applicability stomach content analysis and overcome such limitation. NGS was applied to analyze the stomach contents of the Hemibarbus labeo, Tachysurus fulvidraco, and Plecoglossus altivelis collected in the lower part of Nakdong River. As a result, T. fulvidraco had a higher number of Animalia operational taxonomic units (OTUs) intake rate than H. labeo. At the same time, P. altivelis had higher number of Plantae OTUs intake rate than T. fulvidraco and higher Protozoa OTUs intake rate than H. labeo respectively. Therefore, NGS technology application enable to overcome traditional method's limitation and discover hidden interspecific interaction which can further be used in appropriate habitat assessment.

A Dynamic Analysis on the Competition Relationships in Korean Stock Market Using Lotka-Volterra Model (Lotka-Volterra 모형을 이용한 국내 주식시장의 경쟁관계 동태적 분석)

  • Lee, Sung Joon;Lee, Deok-Joo;Oh, Hyungsik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.1
    • /
    • pp.14-20
    • /
    • 2003
  • The purpose of this paper is an attempt to analyze the dynamic relationship between KSE and KOSDAQ, two competing markets in Korean stock market, in the viewpoint of competition. Lotka-Volterra model, one of well-known competitive diffusion model, is adopted to represent the competitive situations of Korean stock market and it is estimated using daily empirical index data of KSE and KOSDAQ during 1997~2001. The results show that there existed a predator-prey relationship between two markets in which KSE acted as a predator right after the emergence of KOSDAQ. This interaction was altered to a symbiotic relationship and finally to the pure competition relationship. We also perform an equilibrium analysis of the estimated Lotka-Volterra equations and, as a result, it is found that there is a market index equilibrium point that would be stable in the latest relationship.

POSITIVE COEXISTENCE FOR A SIMPLE FOOD CHAIN MODEL WITH RATIO-DEPENDENT FUNCTIONAL RESPONSE AND CROSS-DIFFUSION

  • Ko, Won-Lyul;Ahn, In-Kyung
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.4
    • /
    • pp.701-717
    • /
    • 2006
  • The positive coexistence of a simple food chain model with ratio-dependent functional response and cross-diffusion is discussed. Especially, when a cross-diffusion is small enough, the existence of positive solutions of the system concerned can be expected. The extinction conditions for all three interacting species and for one or two of three species are studied. Moreover, when a cross-diffusion is sufficiently large, the extinction of prey species with cross-diffusion interaction to predator occurs. The method employed is the comparison argument for elliptic problem and fixed point theory in a positive cone on a Banach space.

The Management Methods of Multi-Purpose Ecological Reservoir by System Thinking - Focused on Anteo Eco Park - (시스템 사고를 통한 다기능 생태저류지의 관리방안 - 광명 안터생태공원을 중심으로 -)

  • Lee, HyunJi;You, Soojin;Chon, Jinhyung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.2
    • /
    • pp.1-17
    • /
    • 2015
  • Ecological reservoir is a multifunctional space where provides the functions of retention, animal habitat and improvement of ecosystem health and landscape. The ecological reservoir of Anteo Eco Park located in Gwangmyeong-si has established to functions for water purification, maintenance of healthy aquatic ecosystem. Because the Anteo Eco Park is located in the site where nonpoint pollutant materials flow in, Anteo Eco Park has potential factors which aquatic ecosystem health deteriorates and damages the habitat of golden frog(Rana plancyi chosenica) which is restoration target species. Therefore, the purpose of this study is to suggest the plan to manage the variables which impede the right functions of aquatic ecosystem by understanding the causal loop diagram for the change of water quality environment and the interaction of predator-prey through system thinking. The results are as follows. First, the study showed that the individual number of golden frog which is an indicator species of Anteo Eco Park is threatened by snakeheaded fish, which is an upper predator. Therefore, balanced food chain should be hold to protect golden frog by capturing the snakeheaded fish which is individual number's density is high, and the monitoring management of the individual number for predator(snakeheaded fish)-prey(golden frog) should be performed. Second, the study represented that water pollution and carnification is caused by the sediment as the dead body of the large emergent vegetation in the winter cumulates as sediment. Ecological reservoir in Anteo Eco Park has been managed by eliminating the dead body of the large emergent vegetation, but the guideline for the proper density maintenance of vegetation community is additionally needed. Lastly, the study showed that aquatic ecosystem of Anteo Eco Park where is contaminated from the inflow of nonpoint pollutants affects the individual number's decline of golden frog and snakeheaded fish. Accordingly, the creation of a buffer area and a substitution wetland is needed in the periphery of the Anteo Eco Park to control the inflow of nonpoint pollutants including organic matters, nutrients and heavy metals. This study will be helpful that Anteo Eco Park improves the regional landscape and maintain healthy aquatic ecosystem space for the park visitors including local residents.