• 제목/요약/키워드: preconditioning.

검색결과 262건 처리시간 0.022초

C-GIS의 설계 및 성능평가 결과분석 (The design of C-GIS and the analysis of its Performance test results)

  • 신영준;김맹현;류형기;이용한;김창현;김진기;김귀식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.551-553
    • /
    • 2002
  • The cubicle type GIS rated at 25.8kV has been designed and manufactured by Jinkwang E&C eacently with their own technologies and KERI's assistances. The C-GIS has been tested to check the design capability for reference before conducting the type test. The operating characteristics test, short time withstand current and peak withstand current test, basic short circuit test duty T60 for preconditioning test, cable charging current switching test, capacitor bank current switching test, basic short circuit test duty T100s and T100a, single phase earth fault test, double earth fault test has been conducted. The test results show that the design and the manufacturing of the C-GIS has an enough capability to pass through the type test except the occurrence of 2 NSDDs in the cable charging current switching test and the instability of opening time at the minimum operating voltage. The problems shown in the tests will be improved soon and the successful pass will be expected in the following type test.

  • PDF

내재적 경계조건 방법을 적용한 비정렬 격자 기반의 정상 압축성 Navier-Stokes 해석자 (AN UNSTRUCTURED STEADY COMPRESSIBLE NAVIER-STOKES SOLVER WITH IMPLICIT BOUNDARY CONDITION METHOD)

  • 백청;김민수;최선규;이승수;김철완
    • 한국전산유체공학회지
    • /
    • 제21권1호
    • /
    • pp.10-18
    • /
    • 2016
  • Numerical boundary conditions are as important as the governing equations when analyzing the fluid flows numerically. An explicit boundary condition method updates the solutions at the boundaries with extrapolation from the interior of the computational domain, while the implicit boundary condition method in conjunction with an implicit time integration method solves the solutions of the entire computational domain including the boundaries simultaneously. The implicit boundary condition method, therefore, is more robust than the explicit boundary condition method. In this paper, steady compressible 2-Dimensional Navier-Stokes solver is developed. We present the implicit boundary condition method coupled with LU-SGS(Lower Upper Symmetric Gauss Seidel) method. Also, the explicit boundary condition method is implemented for comparison. The preconditioning Navier-Stokes equations are solved on unstructured meshes. The numerical computations for a number of flows show that the implicit boundary condition method can give accurate solutions.

The JFNK method for the PWR's transient simulation considering neutronics, thermal hydraulics and mechanics

  • He, Qingming;Zhang, Yijun;Liu, Zhouyu;Cao, Liangzhi;Wu, Hongchun
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.258-270
    • /
    • 2020
  • A new task of using the Jacobian-Free-Newton-Krylov (JFNK) method for the PWR core transient simulations involving neutronics, thermal hydraulics and mechanics is conducted. For the transient scenario of PWR, normally the Picard iteration of the coupled coarse-mesh nodal equations and parallel channel TH equations is performed to get the transient solution. In order to solve the coupled equations faster and more stable, the Newton Krylov (NK) method based on the explicit matrix was studied. However, the NK method is hard to be extended to the cases with more physics phenomenon coupled, thus the JFNK based iteration scheme is developed for the nodal method and parallel-channel TH method. The local gap conductance is sensitive to the gap width and will influence the temperature distribution in the fuel rod significantly. To further consider the local gap conductance during the transient scenario, a 1D mechanics model is coupled into the JFNK scheme to account for the fuel thermal expansion effect. To improve the efficiency, the physics-based precondition and scaling technique are developed for the JFNK iteration. Numerical tests show good convergence behavior of the iterations and demonstrate the influence of the fuel thermal expansion effect during the rod ejection problems.

Effect of Salinity on Orobanche cernua Seed Germination

  • Al-Khateeb, W.M.;Hameed, K.M.;Shibli, R.A.
    • The Plant Pathology Journal
    • /
    • 제19권3호
    • /
    • pp.148-151
    • /
    • 2003
  • Seeds of broomrape (Orobanche cernua) were exposed to 0, 25, 50, 75, and 100 mM NaCl solutions during their preconditioning period (14 days of moisture) under laboratory conditions and induced to germinate by synthetic germination stimulant (GR24). There was significant reduction in seed germination with increased salt concentration as shown in 35.2, 32.5, 23.6, 14.3, and 9.2% germination, respectively. Exposure of Orobanche cernua seeds to 0.0, 1.0, 1.25, and 1.5 M levels of NaCl for 9 hours resulted in 29.4, 21.3, 20.5, and 17.4% germination, respectively. Water preconditioned seeds showed Heavier protein profile bands of 6.5-14.2 KDa than those of dry seeds. Seeds treated with 0.75 M NaCl showed profile similar with that of water preconditioned ones, plus an extra band at 29-36 KDa. The protein profiles of 1.0 and 1.5 M NaCl treated seeds showed weaker bands with the absence of 29-36 KDa band.

서로 다른 두 개의 공동모델의 모델 상수값이 공동의 길이에 미치는 영향연구 (A STUDY ABOUT THE EFFECT OF MODEL CONSTANTS OF TWO CAVITATION MODELS ON CAVITY LENGTH)

  • 김미선;하콩투;박원규;정철민
    • 한국전산유체공학회지
    • /
    • 제17권3호
    • /
    • pp.25-32
    • /
    • 2012
  • This work was devoted to compare two different cavitation models to study the dependency of model constants. The cavitation model of Merkle et al.(2006) and Kunz et al.(2000) were used for the present computational study. The cavitation models were coupled with the incompressible unsteady Reynolds-Averaged Navier-Stokes solver to indicate the vaporization and condensation processes. For this purpose, a preconditioning method was added as the pseudo-time term to solve the unsteady stiffness problems. For the validation of the numerical simulation, the computation was performed for the cavitating flow in a converging-diverging channel. The present results show that Merkle's cavitation model is independent to the model constants, and the higher numerical accuracy over Kunz's cavitation model.

받음각 변화에 대한 수중익형의 캐비테이션 해석 (CAVITATION FLOW ANALYSIS OF HYDROFOIL WITH CHANGE OF ANGLE OF ATTACK)

  • 강태진;박원규;정철민
    • 한국전산유체공학회지
    • /
    • 제19권2호
    • /
    • pp.17-23
    • /
    • 2014
  • Cavitation causes a great deal of noise, damage to components, vibrations, and a loss of efficiency in devices, such as propellers, pump impellers, nozzles, injectors, torpedoes, etc. Thus, the cavitating flow simulation is of practical importance for many engineering systems. In the present work, a two-phase flow solver based on the homogeneous mixture model has been developed. The solver employs an implicit preconditioning, dual time stepping algorithm in curvilinear coordinates. The flow characteristics around Clark-Y hydrofoil were calculated and then validated by comparing with the experimental data. The lift and drag coefficients with changes of angle of attack and cavitation number were obtained. The results show that cavity length and lift, drag coefficient increase with increasing angle of attack.

이산화된 Navier-Stokes 방정식의 영역분할법을 위한 병렬 예조건화 (Parallel Preconditioner for the Domain Decomposition Method of the Discretized Navier-Stokes Equation)

  • 최형권;유정열;강성우
    • 대한기계학회논문집B
    • /
    • 제27권6호
    • /
    • pp.753-765
    • /
    • 2003
  • A finite element code for the numerical solution of the Navier-Stokes equation is parallelized by vertex-oriented domain decomposition. To accelerate the convergence of iterative solvers like conjugate gradient method, parallel block ILU, iterative block ILU, and distributed ILU methods are tested as parallel preconditioners. The effectiveness of the algorithms has been investigated when P1P1 finite element discretization is used for the parallel solution of the Navier-Stokes equation. Two-dimensional and three-dimensional Laplace equations are calculated to estimate the speedup of the preconditioners. Calculation domain is partitioned by one- and multi-dimensional partitioning methods in structured grid and by METIS library in unstructured grid. For the domain-decomposed parallel computation of the Navier-Stokes equation, we have solved three-dimensional lid-driven cavity and natural convection problems in a cube as benchmark problems using a parallelized fractional 4-step finite element method. The speedup for each parallel preconditioning method is to be compared using upto 64 processors.

Endotoxin-induced renal tolerance against ischemia and reperfusion injury is removed by iNOS, but not eNOS, gene-deletion

  • Kim, Jee-In;Jang, Hee-Seong;Park, Kwon-Moo
    • BMB Reports
    • /
    • 제43권9호
    • /
    • pp.629-634
    • /
    • 2010
  • Endotoxin including lipopolysaccharide (LPS) confers organ tolerance against subsequent challenge by ischemia and reperfusion (I/R) insult. The mechanisms underlying this powerful adaptive defense remain to be defined. Therefore, in this study we attempted to determine whether nitric oxide (NO) and its associated enzymes, inducible NOS (iNOS) and endothelial NOS (eNOS, a constitutive NOS), are associated with LPS-induced renal tolerance against I/R injury, using iNOS (iNOS knock-out) or eNOS (eNOS knock-out) gene-deleted mice. A systemic low dose of LPS pretreatment protected kidney against I/R injury. LPS treatment increased the activity and expression of iNOS, but not eNOS, in kidney tissue. LPS pretreatment in iNOS, but not eNOS, knock-out mice did not protect kidney against I/R injury. In conclusion, the kidney tolerance to I/R injury conferred by pretreatment with LPS is mediated by increased expression and activation of iNOS.

자유표면 영향을 고려한 환기공동 전산유동해석 (NUMERICAL ANALYSIS OF VENTILATED CAVITATION WITH FREE SURFACE EFFECTS)

  • 김미선;김호윤;하콩투;박원규
    • 한국전산유체공학회지
    • /
    • 제18권1호
    • /
    • pp.13-21
    • /
    • 2013
  • Cavitating flow is usually formed on the surface of a high speed underwater object. When a object moves near a free surface at very high speed, the cavity signature becomes one of the major factors to be overcome by sensors of military satellite. The present work was to study the free surface effect on the ventilated cavitation. The governing equations were Navier-Stokes equations based on a homogeneous mixture model. The multiphase flow solver used an implicit preconditioning method in the curvilinear coordinate system. The cavitation model used here was the one first presented by Merkle et al.(2006) and redeveloped by Park & Ha(2009). Computations considered the free surface effects were carried out with a NACA0012 hydrofoil and the corresponding results were compared with the experimental data to have a good agreement. Calculations were then performed considering the ventilated cavitation, including the effect of non-condensable gas under the free surface effects.