• Title/Summary/Keyword: preclinical PET detector

Search Result 6, Processing Time 0.02 seconds

DOI Detector Design using Different Sized Scintillators in Each Layer (각 층의 서로 다른 크기의 섬광체를 사용한 반응 깊이 측정 검출기 설계)

  • Seung-Jae, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.11-16
    • /
    • 2023
  • In preclinical positron emisson tomography(PET), spatial resolution degradation occurs outside the field of view(FOV). To solve this problem, a depth of interaction(DOI) detector was developed that measures the position where gamma rays and the scintillator interact. There are a method in which a scintillation pixel array is composed of multiple layers, a method in which photosensors are arranged at both ends of a single layer, a method in which a scintillation pixel array is constituted in several layers and a photosensor is arranged in each layer. In this study, a new type of DOI detector was designed by analyzing the characteristics of the previously developed detectors. In the two-layer detector, different sizes of scintillation pixels were used for each layer, and the array size was configured differently. When configured in this form, the positions of the scintillation pixels for each layer are arranged to be shifted from each other, so that they are imaged at different positions in a flood image. DETECT2000 simulation was performed to confirm the possibility of measuring the depth of interaction of the designed detector. A flood image was reconstructed from a light signal acquired by a gamma-ray event generated at the center of each scintillation pixel. As a result, it was confirmed that all scintillation pixels for each layer were separated from the reconstructed flood image and imaged to measure the interaction depth. When this detector is applied to preclinical PET, it is considered that excellent images can be obtained by improving spatial resolution.

Precise System Models using Crystal Penetration Error Compensation for Iterative Image Reconstruction of Preclinical Quad-Head PET

  • Lee, Sooyoung;Bae, Seungbin;Lee, Hakjae;Kim, Kwangdon;Lee, Kisung;Kim, Kyeong-Min;Bae, Jaekeon
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1764-1773
    • /
    • 2018
  • A-PET is a quad-head PET scanner developed for use in small-animal imaging. The dimensions of its volumetric field of view (FOV) are $46.1{\times}46.1{\times}46.1mm^3$ and the gap between the detector modules has been minimized in order to provide a highly sensitive system. However, such a small FOV together with the quad-head geometry causes image quality degradation. The main factor related to image degradation for the quad-head PET is the mispositioning of events caused by the penetration effect in the detector. In this paper, we propose a precise method for modelling the system at the high spatial resolution of the A-PET using a LOR (line of response) based ML-EM (maximum likelihood expectation maximization) that allows for penetration effects. The proposed system model provides the detection probability of every possible ray-path via crystal sampling methods. For the ray-path sampling, the sub-LORs are defined by connecting the sampling points of the crystal pair. We incorporate the detection probability of each sub-LOR into the model by calculating the penetration effect. For comparison, we used a standard LOR-based model and a Monte Carlo-based modeling approach, and evaluated the reconstructed images using both the National Electrical Manufacturers Association NU 4-2008 standards and the Geant4 Application for Tomographic Emission simulation toolkit (GATE). An average full width at half maximum (FWHM) at different locations of 1.77 mm and 1.79 mm are obtained using the proposed system model and standard LOR system model, which does not include penetration effects, respectively. The standard deviation of the uniform region in the NEMA image quality phantom is 2.14% for the proposed method and 14.3% for the LOR system model, indicating that the proposed model out-performs the standard LOR-based model.

Study on Maximizing Scintillation Pixel Array Image by Changing Scintillator Bottom Surface Treatment in a 4 × 4 Array SiPM Photosensor with 3 mm × 3 mm Pixels for Improved Spatial Resolution (공간분해능 향상을 위한 3 mm × 3 mm 픽셀을 지닌 4 × 4 배열의 SiPM 광센서에서의 섬광체 바닥 면 처리의 변경을 통한 섬광 픽셀 배열 영상의 최대화 연구)

  • Woojin Jo;Seung-Jae Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.5
    • /
    • pp.491-498
    • /
    • 2024
  • Preclinical positron emission tomography (PET) requires excellent spatial resolution because the subject of imaging is a very small animal. To achieve this, a detector is configured using fine scintillation pixels. In this study, we aim to increase the scintillation pixel array by processing the bottom surface of the scintillation pixels differently from the array of scintillation pixels that can be imaged in the same photosensor performed in the previous study. To this end, we designed a detector using DETECT2000, which can simulate light in the scintillator, and performed a simulation. The detector was configured from an 11 × 11 array to a 16 × 16 array, and the bottom surface was configured as a polished surface (POLISH) and a rough surface (GROUND) to obtain a flood image. As a result, it was confirmed that the scintillation pixel images were better separated on the GROUND surface than on the POLISH surface as the scintillation pixel array expanded. Furthermore, on the GROUND surface, it was confirmed that the peaks of the scintillation pixel images in the corner area were separated and imaged even in the 16 × 16 array.

Design of DOI Detector Module for PET through the Light Spread Distribution (빛 분포를 통한 양전자방출단층촬영기기의 반응 깊이 측정 검출기 모듈 개발)

  • Lee, Seung-Jae;Baek, Cheol-Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.637-643
    • /
    • 2018
  • A depth of interaction(DOI) detector module using a block scintillator and a pixellated scintillator was designed, and layer discrimination ability was calculated using DETECT2000. The block scintillator was used to improve the sensitivity and the spatial resolution was improved by measuring the DOI. The DOI was measured by analyzing the signal characteristics of each channel of the changed distribution of light. The detector module was composed to the block scintillator in the top layer and the pixellated scintillator in the bottom layer, which changes the distribution of light generated from a scintillator interacting with a gamma ray. In the flood image, the top layer was able to acquire the image at the position similar to the position of the bottom layer because the bottom layer consist of the pixellated scintillator. By using the Anger algorithm, the 16 channel signal was reduced to 4 channels to facilitate the analysis of the signal characteristics. The layer discrimination was measured using a simple algorithm and the accuracy was about 84% for each layer. When this detector module is used in preclinical PET, the spatial resolution at the outside of the field of view can be improved by measuring the DOI.

Design of Two Layer Depth-encoding Detector Module with SiPM for PET (SiPM을 사용한 두 층의 반응 깊이를 측정하는 양전자방출단층촬영기기의 검출기 모듈 설계)

  • Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.319-324
    • /
    • 2019
  • A depth-encoding detector module with silicon photomultipliers(SiPMs) using two layers of scintillation crystal array was designed, and the position measurement capability was verified using DETECT2000. The depth of interaction of the crystal pixels with the gamma rays was tracked through the image acquired with the combination of surface treatment of the crystal pixels and reflectors. The bottom layer was treated as a reflector except for the optically coupled surfaces, and the crystals of top layer were optically coupled each other except for the outer surfaces so that the light sharing was made easier than the bottom layer. Flood images were obtained through the combination of specular reflectors and random reflectors, grounded and polished surfaces of crystal pixels, and the positions at which layer images were generated were measured and analyzed. The images were reconstructed using the Anger algorithm, whose the SiPM signals were reduced as the 16-channels to 4-channels. In the combination of the grounded surface and all reflectors, the depth positions were discriminated into two layers, whereas it was impossible to separate the two layers in the all polished surface combinations. Therefore, using the combination of grounded surface crystal pixels and reflectors could improve the spatial resolution at the outside of the field of view by measuring the depth position in preclinical positron emission tomography.

Development of PET Detector Module Measuring DOI using Multiple Reflectors (여러 반사체를 사용한 양전자방출단층촬영기기의 반응 깊이 측정 검출기 모듈 개발)

  • Kim, Neung Gyun;Kim, Gu;Kwak, Jong Hyeok;Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.6
    • /
    • pp.825-830
    • /
    • 2019
  • A detector module measuring a depth of interaction was developed using silicon photomultiplier (SiPM) and two layers of scintillation crystal array treated with multiple reflectors. When reconstructing an image based on a signal obtained by using different types of reflector of each layer, the interaction positions of scintillation pixels and gamma rays could be tracked by utilizing the feature that all scintillation pixels were recorded at different positions. The bottom layer uses a specular reflector, and the top layer uses a diffuse reflector to differently process the size of the signal obtained from the SiPM. The optical grease was used to recude the sharp refractive index change between the layers of scintillator and the SiPM. The signals obtained from the 16 SiPMs were reduced to four signals using the Anger equations, and the images were reconstructed using them. All the scintillation pixels composed of the two layers appeared in the reconstructed image, which distinguished the layer where the scintillation pixels and gamma rays interacted. If the detectors, which measure the interaction depth of two layers using different reflectors, will be applied to preclinical positron emission tomography, the degradation of spatial resolution appearing outside the field of interest could be solved.