Kwon, Jin Gwan;Seo, Changon;Jung, Yeon Woo;Choi, Yongmun;Shin, Hyun Tak;Jung, Su Young;Choi, Jeong June;Kim, Jin Kyu
Journal of the Society of Cosmetic Scientists of Korea
/
v.47
no.1
/
pp.57-63
/
2021
In this study, isoscoparin was selected as an indicator component to develop Silene seoulensis extract as a functional cosmetic material, and we developed an analysis method using high performance liquid chromatography (HPLC) for quality control. HPLC was performed on a Unison US-C18 with a gradient elution of 0.05% (v/v) trifluoroacetic acid (TFA) and methanol at a flow rate of 1.0 mL/min at 35 ℃, and the detection wavelength was 330 nm. The HPLC method was performed in accordance with the international conference on harmonization (ICH) guideline (version 4, 2005) of analytical procedures with respect to specificity, precision, accuracy, and linearity. The limits of detection and quantitation were 0.02 and 0.07 mg/mL respectively. Calibration curves showed good linearity (R2 > 0.99988), and the precision of analysis was satisfied (less than 0.46%). In addition, the recovery rate was in the range of 99.10 to 101.61%, it was shown to be accurate. This result indicated that the established HPLC method is very useful for the determination of marker compounds in Silene seoulensis extracts.
Recently, United States Geological Survey (USGS) distributed Landsat 8 Collection 2 Level 2 Science Product (L2SP). This paper aims to derive land surface temperature from L2SP and to validate it. Validation is made by comparing the land surface temperature with the one calculated from Landsat 8 Collection 1 Level 1 Terrain Precision (L1TP) and the one from Automated Synoptic Observing System (ASOS). L2SP is calculated from Landsat 8 Collection 2 Level 1 data and it provides land surface temperature to users without processing surface reflectance data. Landsat 8 data from 2018 to 2020 is collected and ground sensor data from eight sites of ASOS are used to evaluate L2SP land surface temperature data. To compare ground sensor data with remotely sensed data, 3×3 grid area data near ASOS station is used. As a result of analysis with ASOS data, L2SP and L1TP land surface temperature shows Pearson correlation coefficient of 0.971 and 0.964, respectively. RMSE (Root Mean Square Error) of two results with ASOS data is 4.029℃, 5.247℃ respectively. This result suggests that L2SP data is more adequate to acquire land surface temperature than L1TP. If seasonal difference and geometric features such as slope are considered, the result would improve.
Journal of the Korea Society of Computer and Information
/
v.28
no.9
/
pp.17-25
/
2023
In this paper, we propose a model that can perform human pose estimation through a MobileViT-based model with fewer parameters and faster estimation. The based model demonstrates lightweight performance through a structure that combines features of convolutional neural networks with features of Vision Transformer. Transformer, which is a major mechanism in this study, has become more influential as its based models perform better than convolutional neural network-based models in the field of computer vision. Similarly, in the field of human pose estimation, Vision Transformer-based ViTPose maintains the best performance in all human pose estimation benchmarks such as COCO, OCHuman, and MPII. However, because Vision Transformer has a heavy model structure with a large number of parameters and requires a relatively large amount of computation, it costs users a lot to train the model. Accordingly, the based model overcame the insufficient Inductive Bias calculation problem, which requires a large amount of computation by Vision Transformer, with Local Representation through a convolutional neural network structure. Finally, the proposed model obtained a mean average precision of 0.694 on the MS COCO benchmark with 3.28 GFLOPs and 9.72 million parameters, which are 1/5 and 1/9 the number compared to ViTPose, respectively.
The purpose of this study is to analyze the factors affecting the classification of the severity of contrast media side effects based on the patient's body information using artificial intelligence techniques to be used as basic data to reduce the degree of contrast medium side effects. The data used in this study were 606 examiners who had no contrast medium side effects in the past history survey among 1,235 cases of contrast medium side effects among 58,000 CT scans performed at a general hospital in Seoul. The total data is 606, of which 70% was used as a training set and the remaining 30% was used as a test set for validation. Age, BMI(Body Mass Index), GFR(Glomerular Filtration Rate), BUN(Blood Urea Nitrogen), GGT(Gamma Glutamyl Transgerase), AST(Aspartate Amino Transferase,), and ALT(Alanine Amiono Transferase) features were used as independent variables, and contrast media severity was used as a target variable. AUC(Area under curve), CA(Classification Accuracy), F1, Precision, and Recall were identified through AdaBoost, Tree, Neural network, SVM, and Random foest algorithm. AdaBoost and Random Forest show the highest evaluation index in the classification prediction algorithm. The largest factors in the predictions of all models were GFR, BMI, and GGT. It was found that the difference in the amount of contrast media injected according to renal filtration function and obesity, and the presence or absence of metabolic syndrome affected the severity of contrast medium side effects.
Journal of the Society of Cosmetic Scientists of Korea
/
v.49
no.4
/
pp.291-298
/
2023
In this study, a quantitative analysis method was developed using high-performance liquid chromatography (HPLC) to analyze the content of ceramide NP in lotion, cream, and cleanser formulations in cosmetics. The analysis was performed using a C18 column, and the mobile phase was set at a ratio of 70 : 30 for acetonitrile and methanol, the flow rate was set to 0.8 mL/min, and the column temperature was set to 20 ℃. The method was verified by analyzing specificity, linearity, limit of detection, limit of quantitation, accuracy, and precision in accordance with the ICH guidelines. As a result of validating the method, the linearity of the calibration curve was excellent (R2 = 0.99984). The accuracy of the lotion, cream, and cleanser formulations was confirmed with a recovery rate ranging from 95.11% to 100.48%. The precision analysis showed a low relative standard deviation (RSD) of less than 0.26%. The limit of detection was 0.902 ㎍/mL, and the limit of quantitation was 2.733 ㎍/mL. Through this quantitative analysis method of ceramide NP applied in cosmetics, it is expected to assist in the quality control of products by enabling measurement even when it is difficult to separate the main peak due to the influence of interfering substances.
Several triterpenoid saponins from root of Pulsatilla koreana Nakai (Ranunculaceae) were studied and their biological activities were reported. It is difficult to analyze triterpenoid saponins using HPLC-UV due to the lack of chromophores. So, evaporative light scattering detection (ELSD) is used as a valuable alternative to UV detection. More recently, a charged aerosol detection (CAD) has been developed to improve the sensitivity and reproducibility of ELSD. In this study, we developed and validated a novel method of high performance liquid chromatography coupled with a charged aerosol detector for the simultaneous determination of four triterpenoid saponins: pulsatilloside E, pulsatilla saponin H, anemoside B4 and cussosaponin C. Analytes were separated by the Supelco Ascentis$^{(R)}$ Express C18 column (4.6 mm ${\times}$ 150 mm, 2.7 ${\mu}m$) with gradient elution of methanol and water at a flow rate of 0.8 mL/min at $30^{\circ}C$. We examined various factors that could affect the sensitivity of the detectors, including various concentrations of additives, the pH of the mobile phase, and the CAD range. Linear calibration curves were obtained within the concentration ranges of 2 - 200 ${\mu}g$/mL for pulsatilloside E, anemoside $B_4$ and cussosaponin C, and 5 - 500 ${\mu}g$/mL for pulsatilla saponin H with correlation coefficient ($R^2$) greater than 0.995. The limit of detection (LOD) and quantification (LOQ) were 0.04 - 0.2 and 2 - 5 ${\mu}g$/mL, respectively. The validity of the developed HPLC-CAD method was confirmed by satisfactory values of linearity, intra- and inter-day accuracy and precision. This method could be successfully applied to quality evaluation, quality control and monitoring of Pulsatilla koreana.
Korean has the characteristics that case postpositions determine the syntactic roles of phrases and a postposition may have more than one meanings. In particular, the adverbial postpositions make translation from Korean to English difficult, because they can have various meanings. In this paper, we describe a method for resolving such semantic ambiguities of Korean adverbial postpositions using decision trees. The training examples for decision tree induction are extracted from a corpus consisting of 0.5 million words, and the semantic roles for adverbial postpositions are classified into 25 classes. The lack of training examples in decision tree induction is overcome by clustering words into classes using a greedy clustering algorithm. The cross validation results show that the presented method achieved 76.2% of precision on the average, which means 26.0% improvement over the method determining the semantic role of an adverbial postposition as the most frequently appearing role.
A sensitive liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed to determine valproic acid in human red blood cell (RBC). It is important to measure the drug concentration of the RBC as well as that of the plasma because of drug partitioning for pharmacokinetic and pharmacodynamic study. The method was linear over the dynamic range of 1-100 ${\mu}g$/mL with a correlation coefficient $r$ = 0.9997. The linearity of this method was established from 1 to 100 ${\mu}g$/mL for valproic acid in red blood cell with accuracy and precision within 15% at all concentrations. The intra-run and inter-run assay accuracy and coefficient of variations are all within 15% for all QC samples prepared in plasma and red blood human samples. Then, valproic acid amount by protein precipitation in plasma was quantified by LC-MS/MS mass spectrometry. The distribution ratio of VPA in RBC and plasma was analyzed by clinical samples. Based on measurement of the valproic acid in human red blood cell, this method has been applied to clinical research for study of distribution ratio of valproic acid in blood.
Journal of the Korean Association of Geographic Information Studies
/
v.9
no.1
/
pp.46-55
/
2006
The purpose of this study is a development of an automatic mosaicing for applying to large number of airborne multispectral images, which reduces manual operation by human. 2436 airborne multispectral images were acquired from DuncanTech MS4100 camera with three bands; green, red and near infrared. LIDAR(LIght Detection And Ranging) data and GPS/INS(global positioning system/inertial navigation system) data were collected with the multispectral images. First, the multispectral images were converted to image patterns by unsupervised classification. Their patterns were compared with those of adjacent images to derive relative spatial position between images. Relative spatial positions were derived for 80% of the whole images. Second, it accomplished an automatic mosaicing using GPS/INS data and unsupervised classification. Since the time of GPS/INS data did not synchronized the time of readout images, synchronized GPS/INS data with the time of readout image were selected in consecutive data by comparing unsupervised classified images. This method realized mosaicing automatically for 96% images and RMSE (root mean square error) for the spatial precision of mosaiced images was only 1.44 m by validation with LIDAR data.
BACKGROUND/OBJECTIVES: This study aimed to improve portion size estimation aids (PSEAs) used in the nutrition survey of the Korea National Health and Nutrition Examination Survey (KNHANES) and validate the accuracy and precision of the newly developed aids. SUBJECTS/METHODS: We conducted intensive interviews with survey experts in KNHANES and consulted with experts to collect opinions about improvement of PSEAs. Based on the results of the interviews, 5 types of PSEAs (rice bowl, earthen pots, mounds, measuring spoons, and thickness sticks) were newly developed using 3-dimensional (3D) modeling or modification of color or shape. Validation tests were conducted with 96 adults 20 years old or older. For the rice bowl and earthen pots, the participants were asked to select the more similar PSEA in size after being shown the real dishes. For the mounds, measuring spoons, and thickness sticks, the participants were presented with actual plates of food and asked to estimate the given portion sizes using the given PSEAs. RESULTS: The improved 2-dimensional (2D) picture aid for the rice bowl reflecting the size distortion by angle of view using 3D modeling was perceived more closely to the actual size than the current 2D picture (P < 0.001). The change of the color of 2D pictures and 3D models, the change of shape of the measuring spoons, and the 3-dimensionalization of the 2D mounds had no significant improvement in the subjects' perception. CONCLUSIONS: The currently used 2D PSEAs need to be fully redesigned using 3D modeling to improve subjects' perception. However, change of color or shape will not be necessary. For amorphous foods, it is suggested that more evaluation be performed before reaching a final conclusion in the use of PSEAs, or alternative ways to improve accuracy of estimation need to be explored.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.