• Title/Summary/Keyword: precision hot forging

Search Result 73, Processing Time 0.024 seconds

A study on the precision hot forging process for spline teeth of inner-race in auto-transmission (자동변속기 이너레이스 스플라인 치형의 정밀열간단조 공정에 관한 연구)

  • Kim, Hyun-Soo;Lee, Jung-Hwan;Kim, Hyun-Pil;Kim, Yong-Jo;Kang, Seong-Hoon
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.24-30
    • /
    • 2012
  • In this study, the hot forging technology for precision forming of spline teeth of the inner race in the auto-transmission was developed in order to minimize its finishing allowance. Several blocker and finisher shapes for the precision hot forging process of the inner race were proposed and the forging processes were analyzed using the three-dimensional finite element method. The optimum hot forging process was obtained considering some parameters such as metal flow patterns, forging defects and forming load. Blocker and finisher dies for the hot forging process were designed by selecting the most suitable shapes obtained from the finite element analysis. Experimental works were also performed in order to verify the optimum design of hot forging process.

  • PDF

Process Design Molding with Precision Hot Forging of One-Way Clutch Inner Race (원 웨이 클러치 이너 레이스의 정밀 열간 단조 공정설계에 관한 연구)

  • Kim, Hwa-Jeong;Jin, Chul-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.83-90
    • /
    • 2018
  • In this research, we developed a process design hot-forging technology that precisely forms an inner race. The inner race transmits power to a one-way clutch of an automatic transmission and minimizes the CNC machining allowance. For a multi-stage hollow shape (inner race), we proposed several shapes of blocker and finisher for the precision hot-forging process and analyzed the forging process using DEFORM. The hot-forging process was optimized for several parameters, such as metal flow pattern, forging defect, and forming load. Blockers and finisher dies in the hot-forging process were designed to select optimal shapes from finite element analysis, and experiments were conducted to optimize the hot-forging process.

Life Estimation of Hot Forging Die by Plastic Deformation and Wear (소성변형 밀 마멸에 대한 열간 단조 금형의 수명 평가)

  • 이현철;김병민;김광호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.66-75
    • /
    • 2003
  • This paper describes about the estimation method of die lift by wear and plastic deformation in hot forging process. The thermal load and the thermal softening are happened by the high temperature in hot forging process. Tool lift decreases considerably due to the softening of the surface layer of a tool caused by high thermal load and long contact time between tool and billet. Also, tool life is to a large extent limited by wear, heat crack and plastic deformation in hot forging process. Above all, the main factors which affects die accuracy and tool lift are wear and the plastic deformation of a die. The new developed technique for predicting tool life applied to estimate the production quantity for a spindle component and these techniques assist to improve the tool life in hot forging process.

A Study on Transfer Process Design on Hot Forging of Bearing Hub (베어링 허브의 트랜스퍼 열간 단조 공정 설계에 관한 연구)

  • Byun H.S.;Kim B.M.;Ko D.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.993-996
    • /
    • 2005
  • This paper is concerned with transfer process on hot forging of bearing hub. Workers on hot forging have difficulty in working by high temperature and weight workpiece. And In conventional got forging of bearing hub, the material wasted to the flash accounts approximately 10% of the original workpiece. It is need manufacture automation and reduce the cost of forged products. Surface treatment of die and lubricant are investigated from experiment and FE-simulation for analysis of forming simulation. In order to hot forging process design considered flash thickness and blocker geometry and initial temperature of die and billet. This transfer process gave comparatively good results compared with actual products.

  • PDF

Die Life Estimation of Hot Forging for Surface Treatment and Lubricants (표면처리 및 윤활제에 따른 열간 단조 금형의 수명 평가)

  • 이현철;김병민;김광호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.26-35
    • /
    • 2003
  • This study explains the effects of lubricant and surface treatment on hot forging die life. The mechanical and thermal load, and thermal softening which is happened by the high temperature of die, in hot and warm forging, cause die wear, heat checking and plastic deformation, etc. This study is fur the effects of solid lubricants and surface treatment condition for hot forging die. Because cooling effect and low friction are essential to the long life of dies, optimal surface treatment and lubricant are very important to improve die life for hot forging process. The main factors, which affect die hardness and heat transfer, are surface treatments and lubricants, which are related to thermal diffusion coefficient and heat transfer coefficient, etc. For verifying these effects, experiments are performed for hot ring compression test and heat transfer coefficient in various conditions as like different initial billet temperatures and different loads. The effects of lubricant and surface treatment for hot forging die life are explained by their thermal characteristics. The new developed technique in this study for predicting tool life can give more feasible means to improve the tool life in hot forging process.

Die Life Estimation of Hot Forging for Surface Treatment and Lubricants

  • Dong-Hwan;Byung-Min;Chung-Kil
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.5-13
    • /
    • 2004
  • This study explains the effects of lubricant and surface treatment on the life of hot forging dies. The thermal load and thermal softening, that occur when there is contact between the hotter billet and the cooler dies in hot forging, cause wear, thermal cracking and fatigue, and plastic deformation. Because the cooling effect and low friction are essential to the long life of dies, the proper selection of lubricant and surface treatment is very important in hot forging process. The two main factors that decide friction and heat transfer conditions are lubricant and surface treatment, which are directly related to friction factor and surface heat transfer coefficient. Experiments were performed for obtaining the friction factors and the surface heat transfer coefficients in different lubricants and surface treatments. For lubrication, oil-base and water-base graphite lubricants were used, and ion-nitride and carbon-nitride were used as surface treatment conditions. The methods for estimating die service life that are suggested in this study were applied to a finisher die during the hot forging of an automobile part. The new techniques developed in this study for estimating die service life can be used to develop more feasible ways to improve die service life in the hot forging process.

Evaluation of die life during hot forging process (열간 단조 공정의 금형 수명 평가)

  • 이현철;박태준;고대철;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1051-1055
    • /
    • 1997
  • Hot forging is widely used in the manufacturing of automotive component. The mechanical, thermal load and thermal softening which is happened by the high temperature die in hot forging. Tool life of hot forging decreases considerably due to the softening of the surface layer of a tool caused by a high thermal load and long contact time between the tool and workpieces. The service life of tools in hot forging process is to a large extent limited by wear, heat crack, plastic deformation. These are one of the main factors affecting die accuracy and tool life. It is desired to predict tool life by developing life prediction method by FE-simulation. Lots of researches have been done into the life prediction of cold forming die, and the results of those researches were trustworthy, but there have been little applications of hot forming die. That is because hot forming process has many factors influencing tool life, and there was not accurate in-process data. In this research, life prediction of hot forming die by wear analysis and plastic deformation has been carried out. To predict tool life, by experiment of tempering of die, tempering curve was obtained and hardness express a function of main tempering curve.

  • PDF

Process Design for Hot Forging of Asymmetric to Symmetric Rail Steel (비대칭 레일강으로부터 대칭 레일강으로의 열간단조 공정설계)

  • 조해용;이기정;오병기;이학규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.666-669
    • /
    • 2002
  • Process design of hot forging, asymmetric to symmetric rail, which is used for the turnout of railway express has been investigated. Owing to the big difference in shape between the initial billet and the final forged product, it is impossible to hot forge the rail in a single step. Therefore, multi step forging as well as die design for each step are necessary for the production. The deformation behavior during hot forging has been analyzed by the numerical simulation through commercial FEA software, DEFORM$^{TM}$-2D. Modification of the design and repeated simulation have been carried out on the basis of the simulation result. For comparison with the simulation results, flow analysis experiment using plasticize has been also carried out. The results of the flow analysis experiment showed good agreement with those of the simulation. Therefore, the developed process design could be applied to the actual production.

  • PDF

Estimation of Conditions of Incremental Hot Rotary Forging Process for Monobloc Tubular Drive Shaft (일체형 중공 드라이브 샤프트 제작을 위한 점진적 열간 로터리 단조 공정 조건 예측)

  • Lee, Ho-Jin;Guk, Dae-Sun;Ahn, Dong-Gyu;Jung, Jong-Hoon;Seol, Sang-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.287-293
    • /
    • 2016
  • A monobloc tubular drive shaft is designed to obtain the improved structural safety and the weight reduction of the drive shaft together. The monobloc tubular drive shaft can be manufactured from an incremental hot rotary forging process. The aim of this study was to experimentally determine conditions of an incremental hot rotary forging process for a monobloc tubular drive shaft. Induction heating experiments were performed to estimate a proper heating time of an initial workpiece in an induction heating process. Several incremental hot rotary forging experiments were carried out using a mechanical press with the designed set-up. The step distance and the step angle were chosen as controllable forming parameters. Based on the results of the experiments, the influence of forming parameters on the quality of the forged part was investigated. Finally, a forming map and a proper forming condition of the incremental hot rotary forging process were estimated.