• 제목/요약/키워드: precise time

검색결과 1,916건 처리시간 0.027초

광자결정 도파로 성형용 PDMS 스탬프 제작 (PDMS Stamp Fabrication for Photonic Crystal Waveguides)

  • 오승훈;최두선;김창석;정명영
    • 한국정밀공학회지
    • /
    • 제24권4호
    • /
    • pp.153-158
    • /
    • 2007
  • Recently nano imprint lithography to fabricate photonic crystal on polymer is preferred because of its simplicity and short process time and ease of precise manufacturing. But, the technique requires the precise mold as an imprinting tool for good replication. These molds are made of the silicon, nickel and quartz. But this is not desirable due to complex fabrication process, high cost. So, we describe a simple, precise and low cost method of fabricating PDMS stamp to make the photonic crystals. In order to fabricate the PDMS mold, we make the original pattern with designed hole array by finding the optimal electron beam writing condition. And then, we have tried to fabricate PDMS mold by the replica molding with ultrasonic vibration and pressure system. We have used the cleaning process to solve the detaching problem on the interface. Using these methods, we acquired the PDMS mold for photonic crystals with characteristics of a good replication. And the accuracy of replication shows below 1% in 440nm at diameter and in 610nm at lattice constant by dimensional analysis by SEM and AFM.

화학적 에칭을 이용한 유체 및 공기 동압 베어링용 그르브 가공 (Groove manufacturing for Fluid and Aero Dynamic Bearings using Chemical Etching)

  • 이용근;김상욱
    • 전기학회논문지P
    • /
    • 제61권4호
    • /
    • pp.225-227
    • /
    • 2012
  • This paper presents a chemical etching system for groove manufacturing for the fluid and aero dynamic bearings. To manufacture the grooves to thrust and journal surface of the fluid and aero dynamic bearing, it is very important for grooves' depth to be smaller tolerance. It is very difficult for the internal surface of journal bearing to make the grooves precise. If the precision of the groove is not exact, we can not get the desirable performance for the target of the dynamic bearing. To make the groove of bearing precise, we propose the method of chemical etching system. It has known that the method of chemical etching can not make the groove on the internal surface of journal bearing excepts for on the surface of thrust bearing. However, this paper has shown the solution to make the grooves on it. We obtain the condition and the parameters of the system such as time, chemical material composition and so on. In this paper, we get the experimental results to verify the precise groove manufacturing for the fluid and aero dynamic bearing.

Development and Positioning Accuracy Assessment of Precise Point Positioning Algorithms Based on GLONASS Code-Pseudorange Measurements

  • Kim, Mi-So;Park, Kwan-Dong;Won, Jihye
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제3권4호
    • /
    • pp.155-161
    • /
    • 2014
  • The purpose of this study is to develop precise point positioning (PPP) algorithms based on GLONASS code-pseudorange, verify their performance and present their utility. As the basic correction models of PPP, we applied Inter Frequency Bias (IFB), relativistic effect, satellite antenna phase center offset, and satellite orbit and satellite clock errors, ionospheric errors, and tropospheric errors that must be provided on a real-time basis. The satellite orbit and satellite clock errors provided by Information-Analytical Centre (IAC) are interpolated at each observation epoch by applying the Lagrange polynomial method and linear interpolation method. We applied Global Ionosphere Maps (GIM) provided by International GNSS Service (IGS) for ionospheric errors, and increased the positioning accuracy by applying the true value calculated with GIPSY for tropospheric errors. As a result of testing the developed GLONASS PPP algorithms for four days, the horizontal error was approximately 1.4 ~ 1.5 m and the vertical error was approximately 2.5 ~ 2.8 m, showing that the accuracy is similar to that of GPS PPP.

영상처리기술을 이용한 구조물의 변위 측정 시스템의 개발 (Development of Displacement Measurement System of Structures Using Image Processing Techniques)

  • 김성욱;김상봉;서진호
    • 제어로봇시스템학회논문지
    • /
    • 제10권8호
    • /
    • pp.673-679
    • /
    • 2004
  • In this paper, we develop the displacement measurement system of multiple moving objects based on image processing techniques. The image processing method adopts inertia moment theory for obtaining the centroid measurement of the targets and basic processing algorithm of gray, binary, closing, labeling and so on. To get precise displacement measurement in spite of multiple moving targets, a CGD camera with zoom is used and the position of camera is changed by a pan/tilt system. The fiducial marks on the fixed positions are used as the sensing points for the image processing to recognize the position errors in direction of XY-coordinates. The precise alignment device is pan/tilt of XY-type and the pan/tilt is controlled by DC servomotors which are driven by a microprocessor. Morover, the centers of fiducial marks are obtainted by an inertia moment method. By applying the developed precise position control system for multiple targets, the displacement of multiple moving targets are detected automatically and are also stored in the database system in a real time. By using database system and internet, the displacement datum can be confirmed at a great distance and analyzed. Finally, the effectiveness of developed system is shown in experimental results and realized the precision about 0.12[mm] in the position control of XY-coordinates.

A Review on the Usage of RTKLIB for Precise Navigation of Unmanned Vehicles

  • Lim, Cheolsoon;Lee, Yongjun;Cho, Am;Park, Byungwoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권4호
    • /
    • pp.243-251
    • /
    • 2021
  • Real-Time Kinematic (RTK) is a phase-based differential GNSS technique and uses additional observations from permanent reference stations to mitigate or eliminate effects like atmospheric delays or satellite clocks and orbit errors. In particular, as the position accuracy required in the fields of autonomous vehicles and drones is gradually increasing, the demand for RTK-based precise navigation that can provide cm-level position is increasing. Recently, with the rapid growth of the open-source software market, the use of open-source software for building navigation system of unmanned vehicles, which is difficult to mount an expensive GNSS receivers, is gradually increasing. RTKLIB is an open-source software package that can perform RTK positioning and is widely used for research and education purposes. However, since the performance and stability of RTK algorithm of RTKLIB is inevitably inferior to that of commercial GNSS receivers, users need to verify whether RTKLIB can satisfy the navigation performance requirements of unmanned vehicles. Therefore, in this paper, the performance evaluation of the RTK positioning algorithm of RTKLIB was performed using GNSS observation data acquired in a dynamic environment. Therefore, in this paper, the RTK positioning performance of RTKLIB was evaluated using GNSS observation data acquired in a dynamic environment. Our results show that the current RTK algorithm of RTKLIB is not suitable for precise navigation of unmanned vehicles.

클러스터 웹서버 제어시스템의 Time-delay 및 전달 특성 분석 (Analysis of Transfer Characteristics and Time-delay of Control System based on Clustering Web Server)

  • 남의석
    • 디지털융복합연구
    • /
    • 제12권8호
    • /
    • pp.219-227
    • /
    • 2014
  • 인터넷을 통한 정보 전달 방법은 Ethernet과 ATM, CAN과 같은 다양한 통신 전달 프로토콜 및 방법을 통해 이루어지고 있다. 현재 연구된 네트워크상의 시간 지연 현상에 대한 연구는 일부 네트워크 모델을 바탕으로 연구되고 있으나 다양한 통신 환경 하에서 발생하는 시간 지연 현상에 대해 최적의 모델링 방법을 제시해 주고 있지 못하고 있다. 따라서 다양한 네트워크 환경에 적합하도록 인터넷 기반 비동기 샘플치 시스템 모델에 대한 연구가 필요하다. 아울러 인터넷을 통해 구성된 폐루프 시스템은 기존 제어 시스템과 다른 동작 특성과 외란 특성을 가지므로 인터넷 환경에 적합하게 설계된 견실 제어 방법이 필요하다. 따라서 안정성이 극히 요구되는 각종 산업 기기 등에 대한 웹기반 정밀 원격 제어를 원활히 수행하기 위해서는 웹 환경에 최적화된 강인 제어 이론 개발이 필요하다. 따라서, 본 논문에서는 원격지 플랜트에 대한 실시간 원격 제어를 안정적 및 효율적으로 수행하도록 인터넷상의 데이터 전송시 시간 지연 현상 분석 및 인터넷 기반 제어시스템의 전달 특성 분석하였다.

Synchronization System for Time of Mission and Flight Computers over UAV Network

  • Lee, Won-Seok;Jang, Jun-Yong;Song, Hyoung-Kyu
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권4호
    • /
    • pp.387-393
    • /
    • 2021
  • This paper proposes a system to synchronize the time of computers over an unmanned aerial vehicle (UAV) network. With the proposed system, the UAVs can perform missions that require precise relative time. Also, data collected by UAVs can be fused precisely with synchronized time. In the system, to synchronize the time of all computers over the UAV network, two-step synchronization is performed. In the first step, the mission computers of the UAVs are synchronized through the server of the system. After the first step, the mission computers measure time offset between the time of the mission computers and the flight computers. The offset values are delivered to the server. In the second step, virtual time is determined by the server from the collected time offset. The measured offset is compensated by moving the synchronized time of mission computers to the reasonable virtual time. Since only the time of mission computers are controlled, any flight computers that use micro air vehicle link (MAVLink) protocol can be synchronized in the proposed system.

GPS 위성과 무궁화 2호의 광학관측데이터를 이용한 궤도 결정 및 정밀 궤도 결정을 위한 광학관측시스템 제안 (ORBIT DETERMINATION OF GPS AND KOREASAT 2 SATELLITE USING ANGLE-ONLY DATA AND REQUIREMENTS FOR OPTICAL TRACKING SYSTEM)

  • 이우경;임형철;박필호;윤재혁;임홍서;문홍규
    • Journal of Astronomy and Space Sciences
    • /
    • 제21권3호
    • /
    • pp.221-232
    • /
    • 2004
  • TLE로부터 SGP4/SDP4 모델을 이용하여 인공위성의 가상의 위치 정보를 얻은 후 Gauss 방법을 사용하여 인공위성의 예비궤도를 결정해보았다. 예비궤도 결정에 필요한 임의의 세 점 사이의 시간간격을 변화시켜 얻은 결과를 위성의 위치 참값과 비교하여 최소의 차이를 가지는 관측 시간 간격을 찾아보았으며, Gauss 예비궤도 결정법의 성능을 비교, 분석하였다. 실제 인공위성 관측 결과와의 비교를 위해서 한국천문연구원의 광시야 망원경을 사용하여 GPS위성(PRN 26)과 무궁화 2호의 광학관측 데이터를 얻은 후 같은 방법으로 예비궤도를 결정해 보았다. 인공위성의 정밀궤도결정을 위하여 시뮬레이션에서 얻어진 가상의 광학관측 데이터를 가지고 정밀케도결정을 수행하였으며, 관측 데이터의 오차와 관측 시간 간격에 따라 정밀궤도결정을 수행하여 원하는 정밀도를 얻기 위한 관측 시스템의 조건에 대해서 알아보았다.

Analysis of the Increase of Matching Points for Accuracy Improvement in 3D Reconstruction Using Stereo CCTV Image Data

  • Moon, Kwang-il;Pyeon, MuWook;Eo, YangDam;Kim, JongHwa;Moon, Sujung
    • 한국측량학회지
    • /
    • 제35권2호
    • /
    • pp.75-80
    • /
    • 2017
  • Recently, there has been growing interest in spatial data that combines information and communication technology with smart cities. The high-precision LiDAR (Light Dectection and Ranging) equipment is mainly used to collect three-dimensional spatial data, and the acquired data is also used to model geographic features and to manage plant construction and cultural heritages which require precision. The LiDAR equipment can collect precise data, but also has limitations because they are expensive and take long time to collect data. On the other hand, in the field of computer vision, research is being conducted on the methods of acquiring image data and performing 3D reconstruction based on image data without expensive equipment. Thus, precise 3D spatial data can be constructed efficiently by collecting and processing image data using CCTVs which are installed as infrastructure facilities in smart cities. However, this method can have an accuracy problem compared to the existing equipment. In this study, experiments were conducted and the results were analyzed to increase the number of extracted matching points by applying the feature-based method and the area-based method in order to improve the precision of 3D spatial data built with image data acquired from stereo CCTVs. For techniques to extract matching points, SIFT algorithm and PATCH algorithm were used. If precise 3D reconstruction is possible using the image data from stereo CCTVs, it will be possible to collect 3D spatial data with low-cost equipment and to collect and build data in real time because image data can be easily acquired through the Web from smart-phones and drones.

Establishment of Injection Protocol of Test Bolus for Precise Scan Timing in Canine Abdominal Multi-Phase Computed Tomography

  • Choi, Sooyoung;Lee, In;Choi, Hojung;Lee, Kija;Park, Inchul;Lee, Youngwon
    • 한국임상수의학회지
    • /
    • 제35권3호
    • /
    • pp.93-96
    • /
    • 2018
  • This study aimed to establish an injection protocol to determine the precise CT scan timing in canine abdominal multi-phase CT using the test bolus method. Three dynamic scans with different contrast injection parameters were performed using a crossover design in eight normal beagle dogs. A contrast material was administered at a fixed dose of 200 mg iodine/kg as a test bolus for dynamic scans 1 and 2, and 600 mg iodine/kg as a main bolus for dynamic scan 3. The contrast materials were administered with 1 ml/s in dynamic scan 1, and 3 ml/s in dynamic scan 2 and 3. The mean arrival time to the appearance of aortic enhancement in dynamic scan 3 was similar to that in dynamic scan 2, and different significantly to that in dynamic scan 1. The mean arrival time to the peak aortic and pancreatic parenchymal enhancement in dynamic scan 3 was similar to that in dynamic scan 1, and different significantly to that in dynamic scan 2. In multi-phase CT scan, a test bolus should be injected with the same injection duration of a main bolus, to obtain the precise arrival times to peak of arterial or pancreatic parenchymal enhancement.