• 제목/요약/키워드: precise stage

검색결과 325건 처리시간 0.027초

스캐닝 방식 XY 스테이지의 운동오차 분석 (The Analysis of Motion Error in Scanning Type XY Stage)

  • 황주호;박천홍;이찬홍;김동익;김승우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1380-1383
    • /
    • 2004
  • The scanning type XY stage is frequently used these days as precision positioning system in equipment for semiconductor or display element. It is requested higher velocity and more precise accuracy for higher productivity and measuring performance. The position accuracy of general stage is primarily affected by the geometric errors caused by parasitic motion of stage, misalignments such as perpendicular error, and thermal expansion of structure. In the case of scanning type stage, H type frame is usually used as base stage which is driven by two actuators such as linear motor. In the point view of scanning process, the stage is used in moving motion. Therefore, dynamic variation is added as significant position error source with other parasitic motion error. Because the scanning axis is driven by two actuators with two position detectors, 2 dimensional position errors have different characteristic compared to general tacked type XY stage. In this study 2D position error of scanning stage is analyzed by 1D heterodyne interferometer calibrator, which can measure 1D linear position error, straightness error, yaw error and pitch error, and perpendicular error. The 2D position error is evaluated by diagonal measurement (ISO230-6). The yaw error and perpendicular error are compensated on the base stage of scanning axis. And, the horizontal straightness error is compensated by cross axis compensation. And, dynamic motion error in scanning motion is analyzed.

  • PDF

Effective Estimation Method of Routing Congestion at Floorplan Stage for 3D ICs

  • Ahn, Byung-Gyu;Kim, Jae-Hwan;Li, Wenrui;Chong, Jong-Wha
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제11권4호
    • /
    • pp.344-350
    • /
    • 2011
  • Higher integrated density in 3D ICs also brings the difficulties of routing, which can cause the routing failure or re-design from beginning. Hence, precise congestion estimation at the early physical design stage such as floorplan is beneficial to reduce the total design time cost. In this paper, an effective estimation method of routing congestion is proposed for 3D ICs at floorplan stage. This method uses synthesized virtual signal nets, power/ground network and clock network to achieve the estimation. During the synthesis, the TSV location is also under consideration. The experiments indicate that our proposed method had small difference with the estimation result got at the post-placement stage. Furthermore, the comparison of congestion maps obtained with our method and global router demonstrates that our estimation method is able to predict the congestion hot spots accurately.

초고층 RC구조의 기둥축소량 해석 및 현장계측 (Calculation and Measurement of Column Shortening High-Rise RC Structure)

  • 이성원;박현일;김원식;오정근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.133-138
    • /
    • 2003
  • Axial shortenings of wall and columns were measured on level 2 and precise leveling between wall and columns were surveyed on level 5 at the Galleria Palace structure. Measured and surveyed shortening values were compared with the analysis results at the earlier stage on the process of construction for evaluating the predicted values. Though measured values represent relatively low and scattered values at earlier construction stage, probably they show similar slope curves to predicted ones with the progress of time.

  • PDF

외란관측기를 이용한 모션 스테이지의 위치제어 (Position Control of Motion Stage using Disturbance Observer)

  • 박해준;최명수;변정환
    • 동력기계공학회지
    • /
    • 제17권3호
    • /
    • pp.82-88
    • /
    • 2013
  • For commercialized servo drives of the motion stage to include embedded controller, external terminal is provided for tracking command and encoder output, but internal terminal is not for control input. Thus, it is difficult to combine out signal of embedded controller with that of external compensator such as disturbance observer. In this study, for precise tracking control of motion stage without hardware change of the servo drive, tacking control system is composed of an inner loop of servo drive and an outer loop of disturbance observer. Then, the control system is designed so that the output response of actual plant corresponds with nominal model's in transient state as well as in steady state. Finally, the experiment results show that the designed control system is effective to reconcile actual plant behavior with nominal model under nonlinear friction and parameter perturbation.

Precise Position Control of a Linear Stage with I/Q heterodyne Interferometer Feedback

  • Moon, Chan-Woo;Lee, Sung-Ho;Chung, J.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1142-1146
    • /
    • 2004
  • The ultra precision linear stage is an essential device in the fields of MEMS and Bio technology. A piezo electric motor is widely used for its better linear characteristics, faster response time, and smaller size than conventional electro-magnetic actuator. We develop a new inchworm type motor to implement an actuator-integrated a long stroke linear stage which can move fast. To implement a servo system, we use a heterodyne interferometer as a position sensor, and we propose a new measurement technique using I/Q demodulator, and we propose a counting method to measure the position of fast moving object with low cost circuitry. The characteristics of the actuator and servo system are evaluated by measuring its displacement with a commercial laser interferometer.

  • PDF

자기부상을 이용한 초정밀 6자유도 스테이지의 위치제어 (Position Control of a Precise 6-D.O.F Stage with Magnetic Levitation)

  • 이세한;강재관;김용주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.894-897
    • /
    • 2004
  • In this paper, we address a position control scheme for a stage system, which is levitated and driven by electric magnetic actuators. This consists of a levitating object (called platen) with 4 permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion by the vertical and horizontal forces. Dynamic equations of the stage system are derived based on Newton-Euler method and its special Jacobian matrix describing a relation between the Joint velocity and platen velocity is done. There are proposed two control schemes for positioning, which are Cartesian space controller and Joint space controller. The control performance of the Cartesian space controller is better than the Joint space controller in task space trajectory while the Joint space controller is simpler than the Cartesian space controller in controller realization.

  • PDF

선형 브러시리스 DC 모터의 정밀 위치제어에 관한 연구 (A Study on the Precision Position Control for the Linear BLDC Motor)

  • 전영한;김지원;전진홍;전정우;강도현
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권9호
    • /
    • pp.417-422
    • /
    • 2001
  • The brushless DC motor(BLDCM) is widely used in many applications. One of the application of the BLDCM is the stage which is one of process in the semiconductor manufacturing processes. Very high performance is required in the stage process. In this paper, the 1 degree of freedom positioning system for the basic technology of the stage is studied. The linearization method is proposed to make the controller design procedures easy by measuring the thrust force ripple using the strain gauge. And through the experiments, it is proved that the inner velocity control loop is necessary to make more precise positioning control system.

  • PDF

본드그래프를 이용한 듀얼 스테이지 시스템의 모델링, 해석, 및 제어 (Bond Graph Modeling, Analysis and Control of Dual Stage System)

  • 왕위준;한창수
    • 한국산학기술학회논문지
    • /
    • 제13권4호
    • /
    • pp.1453-1459
    • /
    • 2012
  • 본 연구에서는 보이스코일 모터와 압전 구동기를 동일 축으로 배치함으로써 초정밀 위치결정뿐만 아니라 동특성을 개선할 수 있도록 하는 듀얼 스테이지를 다룬다. 듀얼 스테이지는 모델링이 엉성할 경우 오히려 나쁜 동특성을 보이는 단점이 있다. 이 논문은 본드그래프를 이용하여 듀얼 스테이지를 모델링하고 동적 상태방정식을 본드그래프에서 유도하였다. 또한 동특성을 향상시키기 위한 보상기의 설계 예시를 보이고 있으며, 시뮬레이션을 통해 검증하였다.

전자기 액츄애이터를 이용한 능동 진동제어시스템 (Active Vibration Control System Using Electromagnet Actuator)

  • 이주훈;전정우;황돈하;강동식;최영규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2809-2811
    • /
    • 2005
  • In this paper, we address an active vibration control system, which suppresses the vibration engaged by magnetically levitated stage. The stage system consists of a levitating platen with four permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion via the vertical and horizontal forces. In the stage system, which represents the settling-time critical system, the motion of the platen vibrates mechanically. We designed an active vibration control system for suppressing vibration due to the stage moving. The command feedforward with inertial feedback algorithm is used for solving stage system's critical problems. The components of the active vibration control system are accelerometers for detecting stage tables's vibrations, a digital controller with high precise signal converters, and electromagnetic actuators.

  • PDF