• Title/Summary/Keyword: precise monitoring

Search Result 386, Processing Time 0.028 seconds

A Study on Environmental Micro-Dust Level Detection and Remote Monitoring of Outdoor Facilities

  • Kim, Seung Kyun;Mariappan, Vinayagam;Cha, Jae Sang
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.63-69
    • /
    • 2020
  • The rapid development in modern industrialization pollutant the water and atmospheric air across the globe that have a major impact on the human and livings health. In worldwide, every country government increasing the importance to improve the outdoor air pollution monitoring and control to provide quality of life and prevent the citizens and livings life from hazard disease. We proposed the environmental dust level detection method for outdoor facilities using sensor fusion technology to measure precise micro-dust level and monitor in realtime. In this proposed approach use the camera sensor and commercial dust level sensor data to predict the micro-dust level with data fusion method. The camera sensor based dust level detection uses the optical flow based machine learning method to detect the dust level and then fused with commercial dust level sensor data to predict the precise micro-dust level of the outdoor facilities and send the dust level informations to the outdoor air pollution monitoring system. The proposed method implemented on raspberry pi based open-source hardware with Internet-of-Things (IoT) framework and evaluated the performance of the system in realtime. The experimental results confirm that the proposed micro-dust level detection is precise and reliable in sensing the air dust and pollution, which helps to indicate the change in the air pollution more precisely than the commercial sensor based method in some extent.

The Development and Characteristics Analysis of High Precision Monitoring Sensor for the Marine Installation (해양설비용 정밀 모니터링 센서의 개발 및 특성 분석)

  • Cho, Jeong-Hwan;Ko, Sung-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.10
    • /
    • pp.101-106
    • /
    • 2013
  • This paper proposes the new high precision monitoring sensor for the Marine Installation. Among variety of sensor network systems, wireless information transmission through the marine is one of the enabling technologies for the development of future marine-observation systems and sensor networks. Applications of marine monitoring range from oil industry to aquaculture, and include instrument monitoring, pollution control, climate recording, prediction of natural disturbances. For these marine applications to be available, however, the provision of precise location information using monitoring sensor is essential. In this paper, the dynamic characteristics for obtaining the location information of monitoring sensor is analyzed. The theoretical and experimental studies have been carried out. The presented results from the above investigation show considerably excellent performance for the Monitoring for the Marine Installation.

Monitoring and Analysis of Galileo Services Performance using GalTeC

  • Su, H.;Ehret, W.;Blomenhofer, H.;Blomenhofer, E.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.235-240
    • /
    • 2006
  • The paper will give an overview of the mission of GalTeC and then concentrate on two main aspects. The first more detailed aspect, is the analysis of the key performance parameters for the Galileo system services and presenting a technical overview of methods and algorithms used. The second more detailed aspect, is the service volume prediction including service dimensioning using the Prediction tool. In order to monitor and validate the Galileo SIS performance for Open Service (OS) and Safety Of Life services (SOL) regarding the key performance parameters, different analyses in the SIS domain and User domain are considered. In the SIS domain, the validation of Signal-in-Space Accuracy SISA and Signal-in-Space Monitoring Accuracy SISMA is performed. For this purpose first of all an independent OD&TS and Integrity determination and processing software is developed to generate the key reference performance parameters named as SISRE (Signal In Space Reference Errors) and related over-bounding statistical information SISRA (Signal In Space Reference Accuracy) based on raw measurements from independent sites (e.g. IGS), Galileo Ground Sensor Stations (GSS) or an own regional monitoring network. Secondly, the differences of orbits and satellite clock corrections between Galileo broadcast ephemeris and the precise reference ephemeris generated by GalTeC will also be compared to check the SIS accuracy. Thirdly, in the user domain, SIS based navigation solution PVT on reference sites using Galileo broadcast ephemeris and the precise ephemeris generated by GalTeC are also used to check key performance parameters. In order to demonstrate the GalTeC performance and the methods mentioned above, the paper presents an initial test result using GPS raw data and GPS broadcast ephemeris. In the tests, some Galileo typical performance parameters are used for GPS system. For example, the maximum URA for one day for one GPS satellite from GPS broadcast ephemeris is used as substitution of SISA to check GPS ephemeris accuracy. Using GalTeC OD&TS and GPS raw data from IGS reference sites, a 10 cm-level of precise orbit determination can be reached. Based on these precise GPS orbits from GalTeC, monitoring and validation of GPS performance can be achieved with a high confidence level. It can be concluded that one of the GalTeC missions is to provide the capability to assess Galileo and general GNSS performance and prediction methods based on a regional and global monitoring networks. Some capability, of which first results are shown in the paper, will be demonstrated further during the planned Galileo IOV phase, the Full Galileo constellation phase and for the different services particularly the Open Services and the Safety Of Life services based on the Galileo Integrity concept.

  • PDF

Application on the New Technology of Construction Structures Disaster Protection Management based on Spatial Information

  • Yeon, Sangho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.136-145
    • /
    • 2018
  • The disaster monitoring technique by combination of the measurement method and the fine precision of the sensor collecting the satellite-based information that can determine the displacement space is available in a variety of diagnostic information and the GIS/GNSS by first sensor it is being requested from them. Be large and that the facility is operated nationally distributed torsional displacement of the terrain and facilities caused by such natural disasters progress of various environmental factors and the surroundings. To diagnose this spatial information, which contains the various sensors and instruments tracks the precise fine displacement of the main construction structures and the first reference in the Geospatial or more three-dimensional detailed available map and location information using the installed or the like bridges and tunnels produced to a USN/IoT change at any time, by combining the various positioning analysis of mm-class for the facility main area observed is required to constantly in the real time information of the USN/IoT environment sensor, and to utilize this as a precise fine positioning information by UAV/Drone to the precise fine displacement of the semi-permanent infrastructures. It managed to be efficient management by use of new technologies, analyzing the results presented to a method capable of real-time monitoring for a large structure or facility to construction disaster prevention.

A study on Precise Grasping Control of End-Effector for Parts Assembling and Handling (부품조립 및 핸들링을 위한 말단효과장치의 정밀 그리핑 제어에 관한 연구)

  • Ha, Un-Tae;Sung, Ki-Won;Kang, Eun-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.3
    • /
    • pp.173-180
    • /
    • 2015
  • In this paper, we propose a new precise control technology of robotic gripper for assembling and handling of part. When a robot manipulator interacts mechanically with its environment to perform tasks such as assembly or edge-finishing, the end-effector is thereby constrained by the environment. Therefore grasping force control is very important, since it increases safety due to monitoring of contact force. A comparison of various force control architecture is reported. Different force control methods can often be configured to achieve similar results for a given task, and the choice of control algorithm depends strongly on the application or on the characteristics of a particular robot. In the research, the adjustable gripping force can be controlled and improved the accuracy using the artificial intelligence techniques.

Technique for Soil Solution Sampling Using Porous Ceramic Cups

  • Chung, Jong-Bae
    • Applied Biological Chemistry
    • /
    • v.41 no.8
    • /
    • pp.583-586
    • /
    • 1998
  • Porous ceramic cups are used for monitoring ion concentration in soil solutions in various time course and depth. A soil solution sampler was constructed in laboratory by inserting pliable perfluoroalkoxy(PFA) tubings into porous cup through holes in PVC rod segment which plugged top opening of the porous cup. The system was installed in drip irrigated soil in a vertical position, and nitrogen movement below the drip basin was monitored. To collect soil solution, vacuum in the cup was applied with a hand vacuum pump. The samples obtained were sufficient enough to run quantitative analyses for a number of chemicals. Nitrogen transformation and movement could be well defined, and the system seemed to be relevant to the other soil solution samplers in monitoring chemical movement in soil. Although this system has general deficiencies found in the other samplers using ceramic cup, it could be easily constructed at a low cost. Since the tubing was pliable, the cups could be installed in horizontal position, and this allows installations of the cups at more precise depth increments and also more precise samplings of soil solution at each depth.

  • PDF

Development of Terrestrial Photogrammetric Technique for Structure Monitoring (구조물 monitoring을 위한 지상사진측량기법의 개발)

  • Han, Seung Hee;Kang, Joon Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.151-160
    • /
    • 1994
  • Recently, terrestrial photogrammetry has been applied effectively to data acquisition in GIS and to monitoring precise machinery for simulation test. Because 3-D coordinates of many object points can be quickly measured with constant accuracy and easy modeling by this method. In this study, the composition concerned with multi-camera system which simultaneously analyzes structure from multi-station using various cameras was developed. The errors of results were analyzed to investigate the accuracy of the system, error of unknown points and control points, convergent and strip adjustment for optimal network design also. As results of this study, the efficiency of multi-camera system developed here was proved through application to monitoring the entire area of the precise model ship. We could also acquire 3-dimensional coordinates with good accuracy by arranging pass points. Therefore, possibility of measurement of instantaneous deformation as well as precision analysis of structures can be suggested.

  • PDF

Development of a Wireless Vibration Monitoring System for Structural Health Evaluation (구조안전성 평가를 위한 무선 진동 모니터링 시스템 개발)

  • Shim, Bo-Gun;Lee, Shi-Bok;Chae, Min-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.166-171
    • /
    • 2010
  • Wired monitoring systems have been used for damage detection and dynamic analysis of large structures(bridges, dams, plants, etc.). However, the real-world applications still remain limited, mainly due to time and cost issues inherent to wired systems. In recent years, an increasing number of researchers have adopted WSN(wireless sensor network) technologies to the field of SHM(structural health monitoring). Accurate time synchronization is most critical for the wireless approach to be feasible for SHM purpose, along with sufficient wireless bandwidth and highly precise measuring resolution. To satisfy technical criteria stated above, a wireless vibration monitoring system that uses high-precision MEMS(micro-electro-mechanical system) sensors and A/D convertor is discussed in detail. It was found experimentally that the level of time synchronization fell within $200\;{\mu}sec$.

A Study on the Monitoring of the parts of Precision Machine using Non-Metric Camera (비측량용 사진기에 의한 정밀기계부품의 monitoring에 관한 연구)

  • 강준묵;우원진;배연성
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.2
    • /
    • pp.73-80
    • /
    • 1991
  • Identifying linear form of the parts of precision machine, precise monitoring is indispensable. Therefore, in this study, close-range photogrammetry being tried to screw one of the parts of precision machine, using non-metric camera that is calibrated by plumb line method. Also, it is analyzed three dimensional values of tortien, offset, section and thickness. From results of this study, monitoring of the parts of precision machine was conducted efficiently using non-metric camera and possibility of this application was proved.

  • PDF