• Title/Summary/Keyword: precipitation treatment system

Search Result 103, Processing Time 0.025 seconds

Characteristics of The Wastewater Treatment Processes for The Removal of Dyes in Aqueous Solution(1) - Chemical Precipitation or Biological Treatment - (수용액 중의 염료 제거를 위한 폐수처리공정의 특성(1) -화학적 응집 및 생물학적 처리-)

  • Han Myung Ho;Huh Man Woo
    • Textile Coloration and Finishing
    • /
    • v.17 no.2 s.81
    • /
    • pp.31-39
    • /
    • 2005
  • This study was conducted to remove the dyes in dye wastewater by the chemical precipitation or biological treatment which are one of the main pollutants in dye wastewater. In order to remove the disperse dyes effectively in aqueous solution by chemical precipitation process, coagulation and flocculation tests were carried out using several coagulants on various reaction conditions. It was found that the Ferrous sulfate was the most effective coagulant for the removal of disperse dye(DB79), and we could get the best result for the removal of disperse dye(DB56) in the aspects of TOC removal efficiency and sludge yield. When the Ferrous sulfate dosage was 800mg/l, the sludge settling velocity was very fast$(SV_{30}=4\%)$, and the color was effectively removed in the disperse dye(DB79) solution. Although the color removal was ineffective when the Alum was used as a coagulant, the sludge yield decreased in comparison with the Ferrous sulfate or the Ferric sulfate being used in the disperse dye(DB56) solution. In order to decolorize disperse dye(DR17) by using biological treatment process, a strain which has potential ability to degrade disperse dyes was isolated from natural system. The optimal culture conditions of temperature and pH were found to be $40^{\circ}C\;and\;8.5\~9$, respectively. When yeast extract was mixed with polypeptone at the mixing ratio of 1:1 as a nitrogen source, decolorization efficiency was highest$(93\%)$ among the nitrogen sources. The strain screened was excellent to adjust to pH, and it seems to have ability to control pH needed to growth. The optimal culture conditions in concentration of $MgSO_{4.}\cdot7H_2O\;and\;KH_2PO_4$ were $0.1\%(w/v)\;and\;0.2\%(w/v)$, respectively. Strains degrading and decolorizing reactive dyes, RB198 and RR141 which were isolated from water system, are named RBK1 and RRK. And the cell growth characteristics of RBK1 and RRK were investigated. The optimal culture conditions of temperature and pH were found to be 30t' and 7.0, respectively. Optimum nitrogen source was peptone, and it was found that decolorization efficiencies by strains RBK1 and RRK, were $85\%\;and\;62\%$, respectively, with introduction of 4,000mg/l of peptone. In the case of RBK1, color removal efficiencies were very high below 400mg/l. Decolorization efficiency was over $90\%$ at 20hours of culture time. The Color degradation ability of RRK was lower than that of RBK1.

Design and Pharmaceutical Evaluation of Biphenyl Dimethyl Dicarboxylate Elastic Capsules (비페닐디메칠디카르복실레이트 연질캅셀제의 설계 및 제제학적 평가)

  • 전인구;곽혜선;문지현
    • Biomolecules & Therapeutics
    • /
    • v.4 no.4
    • /
    • pp.419-427
    • /
    • 1996
  • To solubilize practically insoluble biphenyl dimethyl dicarboxylate (DDB), which has been used for the treatment of chronic hepatitis as tablets or hard capsules, the solubilities of DDB in various hydrophilic, oily and hydrocarbon vehicles, and aqueous surfactant solutions were measured by high performance liquid chromatography. It was found that, among the vehicles studied, polyethylene glycol (PEG) 300 revealed the best solvency, and the solubility reached 17.6 mg/ml at 37$^{\circ}C$. The addition of glycyrrhizic acid ammonium salt (GAA) to DDB-PEG 300 solution (5-20 mg/g) inhibited the formation of precipitates, and at the concentration of 10 mg/g, any precipitaction was not observed even after 2 years at 4$^{\circ}C$. Furthermore, GAA markedly enhanced the permeation of DDB through the rabbit duodenal mucosa in a concentration dependent manner. The addition of copolyvidone (ca. 1.0%) to DDB-GAA-PEG 300 system (1 : 0.5 97.5 w/w) was most effective in preventing the considerable precipitation of DDB-PEG 300 solution (7.5 mg/750 mg) when mixed with water of 300-900 ml at 37$^{\circ}C$. GAA showed a synergistic effect in the prevention of precipitate formation. This finding suggests that this DDB formulation may form less precipitation when DDB soft capsules disintegrate and diffuse into the gastrointestinal fluid, resulting in improving the bioavailability Dissolution rate of DDB (7.5 mg) from sort elastic capsules of DDB-GAA-PEG 300 system was rapid. The supersaturation state was maintained for 2 hr at the concentration of 7.35$\pm$3.3 mg in 900 ml of water without precipitation. The total amount of DDB dissolved from this new formulation was 5.3 and 6.1 times higher, when compared to marketed DDB tablets (25 mg) and capsules (7.5 mg), respectively.

  • PDF

Mechanical and Physical Property Changes of Cu-Ni-Si-Sn-Fe-P Copper Alloy System According to the Heat Treatment Conditions (열처리조건에 따른 Cu-Ni-Si-Sn-Fe-P 석출경화형 동합금계의 물성변화 특성)

  • Kim, Seung-Ho;Yum, Young-Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.5
    • /
    • pp.225-232
    • /
    • 2013
  • The influence of aging treatment, addition elements and rolling reduction ratio on the microstructure, mechanical, electrical and bendability properties of Cu-Ni-Si-P-x (x = Fe, Sn, Zn) alloys for connector material application was investigated. SEM/EDS analysis exhibited that Ni2-Si precipitates with a size of 20~100 nm were distributed in grains. Fe, Sn, Zn elemnets in Cu-Ni-Si-P alloy imporved the mechanical strength but it was not favor in increasing of electrical conductivity. As higher final rolling reduction ratio, the strength and electrical conductivity is increased after aging treatment, but it indicated excellent bendability. Especially, Cu-2Ni-0.4Si-0.5Sn-0.1Fe-0.03P alloy show the tensile strength value of 700MPa and the electrical conductivity was observed to reach a maximum of 40%IACS. It is optimal for lead frame and connector.

Total Phosphorus Removal in Cattail Wetland Purifying Effluent from a Night Soil Treatment Plant during Its Initial Operation (분뇨처리장 방류수를 정화하는 부들습지의 초기운영 단계에서 총인의 제거)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.1
    • /
    • pp.45-51
    • /
    • 2005
  • Total phosphorus(TP) removal was examined in a surface-flow wetland constructed in April 2003 during its initial operating stage from June to November 2003. Its dimensions were 87mL by 14mW. It was a part of a four-wetland-cell treatment system constructed near the Kohung Estuarine Lake located in the southern part of Korea. Effluent from a night soil treatment plant was discharged into the wetland and purified effluent from the wetland was discharged into Sinyang Stream flowing into the Lake. Cattails(Typha angustifolia ) from natural wetlands were cut at about 40 cm height and transplanted into the wetland. An average of 25.0$m^3$/day of effluent flowed from the plant into the wetland. Water depth was maintained about 0.2m and hydraulic detention time was about 5.2 days. Average heights of the cattail stems in June and October 2003 were 47.2 and 164.6cm, respectively. The average number of stems was 10.2 stems/$m^2$ in June 2003 and 18.8 stems/$m^2$ in October 2003. Average temperature of influent and effluent ranged 23.4 and $24.2^{\circ}C$, respectively. The average TP concentrations of influent and effluent were about 1.31, 0.50mg/L, respectively. TP loading rate of influent into the wetland averaged 26.81mg/$m^2$, day and average TP loading rate of effluent was 10.04mg/$m^2$, day. Monthly average TP removal by the wetland during the warm growing season of cattails(June to September) ranged 16.28~19.57mg/$m^2$, day and during the cold senescent period (October to November) ranged 12.62~13.90mg/$m^2$, day. TP removal in the wetland continued during the cold winter months and was primarily done by sedimentation and precipitation of phosphorus rather than phosphorus absorption by cattails and microorganisms.

A Study on the Precipitation Behavior of $L2_1$-type Precipitates in B2-NiAl (B2형 NiAl에 석출한 $L2_1$형 석출상의 석출거동에 관한 연구)

  • Han, Chang-Suk;Han, Seung-Oh;Lee, Ju-Hee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.6
    • /
    • pp.345-353
    • /
    • 2009
  • The precipitates of $L2_1$-type $Ni_2AlHf$ phase in B2-ordered NiAl system has been observed by using transmission electron microscope (TEM). The hardness of as-quenched NiAl-Hf alloys is high due to the larger strengthening. However, age hardening of this alloy is not main effect to increase hardness compared to the large microstructural variations during aging. At the beginning of aging, the $L2_1$-type $Ni_2AlHf$ precipitates keep a lattice coherency with the NiAl matrix. The orientation relationship between the $Ni_2 AlHf$ precipitate and the NiAl matrix is <100>$_{Ni2AlHf}$//<100>$_{NiAl}$, {001}$_{Ni2AlHf}$//{001}$_{NiAl}$. By aging treatment for long time $Ni_2AlHf$ precipitates lost their coherency and change their morphology to the spherical ones surrounded by misfit dislocations. The orientation relationship between the NiAl matrix and the $Ni_2AlHf$ precipitates, however, has been kept even after longer aging time. The lattice misfit between the $Ni_2AlHf$ precipitate and the NiAl matrix has been calculated by the selected electron diffraction patterns, and the spacings of misfit dislocations is about 4.5% at 1173 K.

A Study on Treatment of Acid Mine Drainage Using an Cow Manure and Spent Oak (우분과 참나무 폐목을 이용한 산성광산배수의 처리에 관한 연구)

  • An, Jong-Man;Lee, Hyun-Ju;Kim, Ki-Ho;Lee, Yong-Bok;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.2
    • /
    • pp.52-60
    • /
    • 2011
  • Although facilities for the passive treatment of AMD (Acid Mine Drainage) are currently operating in Korea, their removal efficiency for heavy metals is relatively low in average (only 80%). Passive treatment system is composed of oxidation tank, SAPS (Successive Alkalinity Producing System), and wetland. In the treatment system adopted in korea, SAPS (Successive Alkalinity Producing System) plays a major role to remove about 65% of heavy metals through a precipitation. However, the efficiency of SAPS is limited due to the use of mushroom compost (MC) as a organic material and of limestone as a neutralizer. Therefore, this research was performed to search for alternative organic materials through the field test. We tested two types of mixed organic materials: 1) cow manure and spent oak (herein, CO) and 2) cow manure and sawdust (herein, CS). For comparison mushroom compost (herein, MC) was also tested. The result showed that the average Fe removal efficiency was 91.38% with CO, 85.19% with CS, and 91.58% with MC. Thus, CO can be effectively used as an alternative of MC in the SAPS system for heavy metals removal.

Open-field Experimental Warming and Precipitation Manipulation System Design to Simulate Climate Change Impact (기후변화 영향 모의를 위한 실외 실험적 온난화 및 강수 조절 시스템 설계 연구)

  • Yun, Soon Jin;Han, Saerom;Han, Seung Hyun;Lee, Sun Jeoung;Jung, Yejee;Kim, Seoungjun;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.2
    • /
    • pp.159-164
    • /
    • 2014
  • The objective of this study was to establish an open-field experimental warming treatment and precipitation manipulation system to simulate climate change impact for Pinus densiflora seedlings based on a climate change scenario in Korea. Two-year-old seedlings were planted in a nursery in April, 2013. The air temperature of warmed plots (W) was set to increase by $3.0^{\circ}C$ compared to control plots (C) using infrared lamps from May, 2013. The three precipitation manipulation consisted of precipitation decrease using transparent panel (-30%; $P^-$), precipitation increase using pump and drip-irrigation (+30%; $P^+$) and precipitation control (0%; $P^0$). Initially, the air temperature was $2.2^{\circ}C$ higher in warmed plots than in control plots and later air temperature was maintained close to the target temperature of $3.0^{\circ}C$. The average soil temperature was $3.1^{\circ}C$ higher in warmed plots than in control plots. Also the average soil moisture content after the precipitation manipulation increased by 13.9% in $P^+W$ and decreased by 10.0% in $P^-W$ compared to $P^0W$, and increased by 23.7% in $P^+C$ and decreased by 7.6% in $P^-C$ compared to $P^0C$. It was confirmed that the open-field experimental warming and precipitation manipulation system was properly designed and operating.

Cleaner Production Option in a Food(Kimchi) Industry

  • Choo, Kwang-Ho;Lee, Chung-Hak
    • Korean Membrane Journal
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • In Kimchi (a salt-pickled and fermented food) manufacturing industry, the process of brining and rinsing the raw vegetable produces a vast amount of wastewater of high salinity. Instead of expensive and low-efficient conventional treatment system, brining wastewater reuse system was developed using hybrid chemical precipitation/microfiltration. In the microfiltration of chemically treated brining wastewater, comparison of flux, backwashing frequency and energy consumption was made between dead-end and crossflow filtration mode. The optimum location of neutralization step in this system was also discussed in connection with the microfiltration performance. The quality test of Kimchi prepared by the reuse system confirmed the new approach was successful in terms of water/raw material(salt) saving and wastewater reduction.

  • PDF

Cleaner Production Option in a Food (KIMCHI) Industry

  • Choo, Kwang-Ho;Lee, Chung-Hak
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.04b
    • /
    • pp.1-12
    • /
    • 1999
  • In Kimchi (a salt-pickled and fermented food) manufacturing industry, the process of brining and rinsing the raw vegetable produces a vast amount of wastewater of high salinity. Instead of expensive and low-efficient conventional treatment system, brining wastewater reuse system was developed using hybrid chemical precipitation / microfiltration. In the microfiltration of chemically treated brining wastewater, comparison of flux, backwashing frequency and energy consumption was made between dead-end and crossflow filtration mode. The optimum location of neutralization step in this system was also discussed in connection with the micro filtration performance. The quality test of Kimchi prepared by the reuse system conformed the new approach was successful in terms of water/raw material (salt) savings and wastewater reduction.

  • PDF

Enhancement of Surface Hardness and Corrosion Resistance of AISI 310 Austenitic Stainless Steel by Low Temperature Plasma Carburizing Treatment

  • Lee, Insup
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.4
    • /
    • pp.272-276
    • /
    • 2017
  • The response of AISI 310 type austenitic stainless steel to the novel low temperature plasma carburizing process has been investigated in this work. This grade of stainless steel shows better corrosion resistance and high temperature oxidation resistance due to its high chromium and nickel content. In this experiment, plasma carburizing was performed on AISI 310 stainless steel in a D.C. pulsed plasma ion nitriding system at different temperatures in $H_2-Ar-CH_4$ gas mixtures. The working pressure was 4 Torr (533Pa approx.) and the applied voltage was 600 V during the plasma carburizing treatment. The hardness of the samples was measured by using a Vickers micro hardness tester with the load of 100 g. The phase of carburized layer formed on the surface was confirmed by X-ray diffraction. The resultant carburized layer was found to be precipitation free and resulted in significantly improved hardness and corrosion resistance.