• Title/Summary/Keyword: precipitation patterns

Search Result 312, Processing Time 0.032 seconds

The Characteristics of the Anomaly Level and Variability of the Monthly Precipitation in Kyeongnam, Korea (경남지방의 월강수량의 변동율과 Anomaly Level의 출현특성)

  • 박종길;이부용
    • Journal of Environmental Science International
    • /
    • v.2 no.3
    • /
    • pp.179-191
    • /
    • 1993
  • This paper aims to know the characteristics of occurrence of the anomaly level and variability of the monthly precipitation in Kyeongnam, Korea. For this study, it was investigated 주e distribution of the annual and cont비y mean precipitation, the precipitation variability and its annual change, and the characteristics of occurrence of the anomaly level in Kyeongnam area the results were summarized as follows : 1) she mean of annual total precipitation averaged over Kyeongnam area is 1433.3mm. I'he spatial distribution of the annual total precipitation shows that in Kyeongnam area, the high rainfall area locates in the southwest area and south coast and the low rainfall area in an inland area. 2) Monthly mean precipitation in llyeongnam area was the highest in July(266.4mm) 각lowed by August(238.0mm), June(210.2mm) in descending order. In summer season, rainfall was concentrated and accounted for 49.9 percent of the annual total precipitation. Because convergence of the warm and humid southwest current which was influenced by Changma and typhoon took place well in this area. 3) The patterns of annual change of precipitaion variability can be divided into two types; One is a coast type and the other an inland type. The variability of precipitation generally appears low in spring and summer season and high in autumn and winter season. This is in accord with the large and small of precipitation. 4) The high frequency of anomaly level was N( Normal)-level and the next was LN( Low Informal) -level and 25(Extremely Subnormal)-level was not appeared in all stations. The occurrence frequency of N level was high in high rainfall area and distinguish성 in spring and summer season but the low rainfall area was not. hey Words : anomaly level, variability, precipitation, coast type, inland type.

  • PDF

Analysis of Spatial-temporal Variability and Trends of Extreme Precipitation Indices over Chungcheong Province, South Korea (충청지역 극한강우지수의 시공간적 경향과 변동성 분석)

  • Bashir, Adelodun;Golden, Odey;Seulgi, Lee;Kyung Sook, Choi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.101-112
    • /
    • 2022
  • Extreme precipitation events have recently become a leading cause of disasters. Thus, investigating the variability and trends of extreme precipitation is crucial to mitigate the increasing impact of such events. Spatial distribution and temporal trends in annual precipitation and four extreme precipitation indices of duration (CWD), frequency (R10 mm), intensity (Rx1day), and percentile-based threshold (R95pTOT) were analyzed using the daily precipitation data of 10 observation stations in Chungcheong province during 1974-2020. The precipitation at all observation stations, except the Boryeong station, showed nonsignificant increasing trends at 95% confidence level (CL) and increasing magnitudes from the west to east regions. The high variability in mean annual precipitation was more pronounced around the northeast and northwest regions. Similarly, there were moderate to high patterns in extreme precipitation indices around the northeast region. However, the precipitation indices of duration and frequency consistently increased from the west to east regions, while those of intensity and percentile-based threshold increased from the south to east regions. Nonsignificant increasing trends dominated in CWD, R10 mm, and Rx1day at all stations, except for R10 mm at Boeun station and Rx1day at Cheongju and Jecheon stations, which showed a significantly increasing trend. The spatial distribution of trend magnitude shows that R10 mm increased from the west to east regions. Furthermore, variations in precipitation were very strongly correlated (99% CL) with R10 mm, Rx1day, and R95pTOT at all stations, except with wR10 mm at Cheongju station, which was strongly correlated with a 95% CL.

Effects of Air Pollution on Precipitation and Living Organisms in Seoul Area (서울 地域의 大氣汚染이 降水와 생물에 미치는 영향 1.地域別 降水의 酸性化에 관하여)

  • Chang, Nam-Kee;Lee, Yun-Sang;Shin, Eun-Yong
    • The Korean Journal of Ecology
    • /
    • v.13 no.2
    • /
    • pp.131-142
    • /
    • 1990
  • From July 1, 1985 to June 30, pH values of precipitation in Seoul area were average 5.1 and acid rain which was lower than pH 5.5 showed a frequence of 70.7%. Seasonal changes appeared in pH values of annual precipitation in Seoul. The pH patterns of spring and autumn were generally less acid than that of summer and winter, and snowfall pH was lower than rainfall. The beginning rainfall in Seoul was neutral because of alkali dust in the atmosphere. As times went on, rainfall pH was gradually low and after 1 to 2 hours, showed a steady state. On the surface soil precipitation was neutralized by soil buffering capacity.

  • PDF

Railroad Disaster Prevention System and Railroad Weather-Related Accidents and incidents according to Precipitation (철도방재시스템과 강우에 인한 철도기상사고)

  • Pakr, Jong-Kil;Jung, Woo-Sik;Kim, Hi-Man;Kim, Eun-Byul;Lee, Jae-Su
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2014-2020
    • /
    • 2010
  • This paper aims to find out characteristics of railroad weather-related accidents and incidents and to proposes the plan of railroad disaster prevention according to the precipitation. For this, we make the database about the railroad weather-related accidents and incidents and analysis the relationship between the hourly and cumulative precipitation and railroad accidents. The results are as follows; The weather events that have the most occurrence frequency of railroad weather-related accidents and incidents is a rainfall of the precipitation and then the cause of that was the falling rocks and the collapsed roadbed. The rainfall patterns of collapsed roadbed were classified into 4 groups. When the variation of hourly rainfall is 10/15 mm/hr over, we need to consider the caution/stop of train operation and a speed limit, respectively.

  • PDF

Nonlinear Multivariable Analysis of SOI, Precipitation, and Temperature in Fukuoka, Japan

  • Jin, Young-Hoon;Akira, Kawamura;Kenji, Jinno;Ronny, Berndtsson
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.124-133
    • /
    • 2004
  • Global climate variations are expected to affect local hydro-meteorological variables like precipitation and temperature. The Southern Oscillation (SO) is one of the major driving forces that give impact on regional and local climatic variation. The relationships between SO and local climate variation are, however, characterized by strong nonlinear variation patterns. In this paper, the nonlinear dynamic relationship between the Southern Oscillation Index (SOI), precipitation, and temperature in Fukuoka, Japan, is investigated using by a nonlinear multivariable approach. This approach is based on the joint variation of these variables in the phase space. The joint phase-space variation of SOI, precipitation, and temperature is studied with the primary objective to obtain a better understanding of the dynamical evolution of local hydro-meteorological variables affected by global atmospheric-oceanic phenomena.

  • PDF

A Simulation Model for the Intermittent Hydrologic Process (II) - Markov Chain and Continuous Probability Distribution - (간헐(間歇) 수문과정(水文過程)의 모의발생(模擬發生) 모형(模型)(II) - Markov 연쇄와 연속확률분포(連續確率分布) -)

  • Lee, Jae Joon;Lee, Jung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.523-534
    • /
    • 1994
  • The purpose of this study is to develop computer simulation model that produce precipitation patterns from stochastic model. In the paper(I) of this study, the alternate renewal process(ARP) is used for the daily precipitation series. In this paper(Il), stochastic simulation models for the daily precipitation series are developed by combining Markov chain for the precipitation occurrence process and continuous probability distribution for the precipitation amounts on the wet days. The precipitation occurrence is determined by first order Markov chain with two states(dry and wet). The amounts of precipitation, given that precipitation has occurred, are described by a Gamma, Pearson Type-III, Extremal Type-III, and 3 parameter Weibull distribution. Since the daily precipitation series shows seasonal variation, models are identified for each month of the year separately. To illustrate the application of the simulation models, daily precipitation data were taken from records at the seven locations of the Nakdong and Seomjin river basin. Simulated data were similar to actual data in terms of distribution for wet and dry spells, seasonal variability, and precipitation amounts.

  • PDF

Preliminary Study of Deep Learning-based Precipitation

  • Kim, Hee-Un;Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.423-430
    • /
    • 2017
  • Recently, data analysis research has been carried out using the deep learning technique in various fields such as image interpretation and/or classification. Various types of algorithms are being developed for many applications. In this paper, we propose a precipitation prediction algorithm based on deep learning with high accuracy in order to take care of the possible severe damage caused by climate change. Since the geographical and seasonal characteristics of Korea are clearly distinct, the meteorological factors have repetitive patterns in a time series. Since the LSTM (Long Short-Term Memory) is a powerful algorithm for consecutive data, it was used to predict precipitation in this study. For the numerical test, we calculated the PWV (Precipitable Water Vapor) based on the tropospheric delay of the GNSS (Global Navigation Satellite System) signals, and then applied the deep learning technique to the precipitation prediction. The GNSS data was processed by scientific software with the troposphere model of Saastamoinen and the Niell mapping function. The RMSE (Root Mean Squared Error) of the precipitation prediction based on LSTM performs better than that of ANN (Artificial Neural Network). By adding GNSS-based PWV as a feature, the over-fitting that is a latent problem of deep learning was prevented considerably as discussed in this study.

Investigation of Korean Precipitation Variability using EOFs and Cyclostationary EOFs (EOF와 CSEOF를 이용한 한반도 강수의 변동성 분석)

  • Kim, Gwang-Seob;Sun, Ming-Dong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1260-1264
    • /
    • 2009
  • Precipitation time series is a mixture of complicate fluctuation and changes. The monthly precipitation data of 61 stations during 36 years (1973-2008) in Korea are comprehensively analyzed using the EOFs technique and CSEOFs technique respectively. The main motivation for employing this technique in the present study is to investigate the physical processes associated with the evolution of the precipitation from observation data. The twenty-five leading EOF modes account for 98.05% of the total monthly variance, and the first two modes account for 83.68% of total variation. The first mode exhibits traditional spatial pattern with annual cycle of corresponding PC time series and second mode shows strong North South gradient. In CSEOF analysis, the twenty-five leading CSEOF modes account for 98.58% of the total monthly variance, and the first two modes account for 78.69% of total variation, these first two patterns' spatial distribution show monthly spatial variation. The corresponding mode's PC time series reveals the annual cycle on a monthly time scale and long-term fluctuation and first mode's PC time series shows increasing linear trend which represents that spatial and temporal variability of first mode pattern has strengthened. Compared with the EOFs analysis, the CSEOFs analysis preferably exhibits the spatial distribution and temporal evolution characteristics and variability of Korean historical precipitation.

  • PDF

Spatio-Temporal Patterns of Extreme Precipitation Events by Typhoons Across the Republic of Korea (태풍 내습 시 남한의 극한강수현상의 시.공간적 패턴)

  • Lee, Seung-Wook;Choi, Gwangyong
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.3
    • /
    • pp.384-400
    • /
    • 2013
  • In this study, spatio-temporal patterns of extreme precipitation events caused by typhoons are examined based on observational daily precipitation data at approximately 340 weather stations of Korea Meterological Administration's ASOS (Automated Synoptic Observation System) and AWS (Automatic Weather System) networks for the recent 10 year period (2002~2011). Generally, extreme precipitation events by typhoons exceeding 80mm of daily precipitation commonly appear in Jeju Island, Gyeongsangnam-do, and the eastern coastal regions of the Korean Peninsula. However, the frequency, intensity and spatial extent of typhoon-driven extreme precipitation events can be modified depending on the topography of major mountain ridges as well as the pathway of and proximity to typhoons accompanying the anti-clockwise circulation of low-level moisture with hundreds of kilometers of radius. Yellow Sea-passing type of typhoons in July cause more frequent extreme precipitation events in the northern region of Gyeonggi-do, while East Sea-passing type or southern-region-landfall type of typhoons in August-early September do in the interior regions of Gyeongsangnam-do. These results suggest that when local governments develop optimal mitigation strategies against potential damages by typhoons, the pathway of and proximity to typhoons are key factors.

  • PDF