Journal of Korean Society for Atmospheric Environment
/
v.22
no.3
/
pp.373-381
/
2006
The catalytic combustion of toluene was investigated on the Cu-Mn oxide catalysts prepared by the deposition-precipitation method. Experiment of toluene combustion was performed with a fixed bed flow reactor in the temperature range of $100{\sim}280^{\circ}C$. Among the catalysts, 1.29Cu/Mn showed the most activity at $260^{\circ}C$. The deposition-precipitation method may be showed the potential to enhance the activity of catalysts. The catalysts were characterized by BET, scanning electron microscopy (SEM), temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) techniques. On the basis of catalyst characterization data, the results showed that the surface of catalysts by deposition-precipitation method had uniform distribution and smaller particle size, which enhanced the reduction capability of catalysts. The XRD results showed that $Cu_{1.5}Mn_{1.5}O_{4}$ spinel phase was made by deposition-precipitation method, and increased catalyst activity and redox characteristic. It was assumed that the reduction step of $Cu_{1.5}Mn_{1.5}O_{4}$ spinel phase progressed $Cu_{1.5}Mn_{1.5}O_{4}\;to\;CuMnO_{2},\;and\;Cu_{2}O\;to\;CuMn_{2}O_{4}\;and\;Cu$.
Since Jeju is the absolute weight of agriculture and tourism, the analysis of precipitation is more important than other regions. Currently, some numerical models are used for analysis of precipitation of Jeju Island using observation data from meteorological satellites. However, since precipitation changes are more diverse than other regions, it is difficult to obtain satisfactory results using the existing numerical models. In this paper, we propose a Jeju precipitation pattern analysis method using the texture analysis method based on Convolution Neural Network (CNN). The proposed method converts the water vapor image and the temperature information of the area of Jeju Island from the weather satellite into texture images. Then converted images are fed into the CNN to analyse the precipitation patterns of Jeju Island. We implement the proposed method and show the effectiveness of the proposed method through experiments.
Korean Journal of Agricultural and Forest Meteorology
/
v.21
no.4
/
pp.366-372
/
2019
The PRISM model has been used to estimate precipitation in South Korea where observation data are readily available at a large number of weather station. However, it is likely that the PRISM model would result in relatively low reliability of precipitation estimates in North Korea where weather data are available at a relatively small number of weather stations. Alternatively, a hybrid method has been developed to estimate the precipitation distribution in area where availability of climate data is relatively low. In the hybrid method, Regression coefficients between the precipitation-terrain relationships are applied to a low-resolution precipitation map produced using the PRISM. In the present study, a hybrid approach was applied to North Korea for estimation of precipitation distribution at a high spatial resolution. At first, the precipitation distribution map was produced at a low-resolution (2,430m) using the PRISM model. Secondly, a deviation map was prepared calculating difference between altitudes of synoptic stations and virtual terrains produced using 270m-resolution digital elevation map (DEM). Lastly, another deviation map of precipitation was obtained from the maps of virtual precipitation produced using observation data from the synoptic weather stations and both synoptic and automated weather station (AWS), respectively. The regression equation between precipitation and terrain was determined using these deviation maps. The high resolution map of precipitation distribution was obtained applying the regression equation to the low-resolution map. It was found that the hybrid approach resulted in better representation of the effects of the terrain. The precipitation distribution map for the hybrid approach had similar spatial pattern to that for the existing method. It was estimated that the mean annual cumulative precipitation of entire territory of North Korea was 1,195mm with a standard deviation of 253mm.
In this study, the Ni-based catalysts for the production of synthetic natural gas were prepared by various preparation methods such as the co-precipitation, precipitation, impregnation and physical mixing methods. The ranges of the reaction conditions were the temperatures of 250~$350^{\circ}C$, $H_2$/CO mole ratio of 3.0, the pressures of 1 atm and the space velocity of 20000 $ml/g_{-cat{\cdot}}{\cdot}h$. It was found that the catalyst prepared by precipitation method had higher CO conversion than the catalyst prepared by co-precipitation method. While the catalyst prepared by precipitation method had the formation of NiO structure, the catalyst prepared by co-precipitation method had the formation of $NiAl_2O_4$ structure. It was confirmed that Ni-based catalyst prepared by the physical mixing method had the lowest CO conversion because it was deactivated by the production of $Ni_3C$ during the methanation. As a result, it was shown clearly that Ni-based catalysts prepared by impregnation method expressed the highest catalytic activity in CO methanation.
Hydrological factors, especially the spatial distribution of interpretation on precipitation is often topic of interest in studying of water resource. The popular methods such as Thiessen method, inverse distance method, and isohyetal method are limited in calculating the spatial continuity and geographical characteristics. This study was intended to overcome those limitations with improved method that will yield higher accuracy. The monthly and yearly precipitation data were produced and compared with the observed daily precipitation to find correlation between them. They were then used as secondary variables in Co-kriging method, and the result was compared with the outcome of existing methods like inverse distance method and kriging method. The comparison of the data showed that the daily precipitation had high correlation with corresponding year's average monthly amounts of precipitation and the observed average monthly amounts of precipitation. Then the result from the application of these data for a Co-kriging method confirmed increased accuracy in the modeling of spatial distribution of precipitation, thus indirectly reducing inconsistency of the spatial distribution of hydrological factors other than precipitation.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.183-183
/
2020
Accurate quantitative precipitation estimation plays an important role in hydrological modelling and prediction. Instantaneous quantitative precipitation estimation (QPE) by utilizing the weather radar data is a great applicability for operational hydrology in a catchment. Previously, regression technique performed between reflectivity (Z) and rain intensity (R) is used commonly to obtain radar QPEs. A novel, recent approaching method which might be applied in hydrological area for QPE is Long Short-Term Memory (LSTM) Networks. LSTM networks is a development and evolution of Recurrent Neuron Networks (RNNs) method that overcomes the limited memory capacity of RNNs and allows learning of long-term input-output dependencies. The advantages of LSTM compare to RNN technique is proven by previous works. In this study, LSTM networks is used to estimate the quantitative precipitation from weather radar for an urban catchment in South Korea. Radar information and rain-gauge data are used to evaluate and verify the estimation. The estimation results figure out that LSTM approaching method shows the accuracy and outperformance compared to Z-R relationship method. This study gives us the high potential of LSTM and its applications in urban hydrology.
Journal of the Korean Institute of Intelligent Systems
/
v.25
no.3
/
pp.217-222
/
2015
Clustering is one of important data mining techniques known as exploratory data analysis and is being applied in various engineering and scientific fields such as pattern recognition, remote sensing, and so on. The method organizes data by abstracting underlying structure either as a grouping of individuals or as a hierarchy of groups. Weather radar observes atmospheric objects by utilizing reflected signals and stores observed data in corresponding coordinate. To analyze the radar data, it is needed to be separately organized precipitation and non-precipitation echo based on similarities. Thus, this paper studies to apply clustering method to radar data. In addition, in order to solve the problem when precipitation echo locates close to non-precipitation echo, fuzzy logic based clustering method which can consider both distance and other properties such as reflectivity and Doppler velocity is suggested in this paper. By using actual cases, the suggested clustering method derives better results than previous method in near-located precipitation and non-precipitation echo case.
This study is to combine precipitation data with different spatial-temporal characteristics using an optimal weighting method. This optimal weighting method is designed for combination of AWS rain gage data and S-band RADAR-estimated rain data with weighting function in inverse proportion to own mean square error for the previous time step. To decide the optimal weight coefficient for optimized precipitation according to different training time, the method has been performed on Changma case with a long spell of rainy hour for the training time from 1 hour to 10 hours. Horizontal field of optimized precipitation tends to be smoothed after 2 hours training time, and then optimized precipitation has a good agreement with synoptic station rainfall assumed as true value. This result suggests that this optimal weighting method can be used for production of high-resolution quantitative precipitation rate using various data sets.
Jang, Suhyung;Hwang, Manha;Hur, Youngteck;Kavvas, M. Levent
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.229-229
/
2015
Downscaling is a fundamental procedure in the assessment of the future climate change impact at regional and watershed scales. Hence, it is important to investigate the spatial variability of the climate conditions that are constructed by various downscaling methods in order to assess whether each method can model the climate conditions at various spatial scales properly. This study introduces a fundamental research from Jang and Kavvas(2015) that precipitation variability from a popular statistical downscaling method (BCSD) and a dynamical downscaling method (MM5) that is based on the NCAR/NCEP reanalysis data for a historical period and on the CCSM3 GCM A1B emission scenario simulations for a projection period, is investigated by means of some spatial characteristics: a) the normalized standard deviation (NSD), and b) the precipitation change over Northern California region. From the results of this study it is found that the BCSD method has limitations in projecting future precipitation values since the BCSD-projected precipitation, being based on the interpolated change factors from GCM projected precipitation, does not consider the interactions between GCM outputs and local geomorphological characteristics such as orographic effects and land use/cover patterns. As such, it is not clear whether the popular BCSD method is suitable for the assessment of the impact of future climate change at regional, watershed and local scales as the future climate will evolve in time and space as a nonlinear system with land-atmosphere feedbacks. However, it is noted that in this study only the BCSD procedure for the statistical downscaling method has been investigated, and the results by other statistical downscaling methods might be different.
Precipitation simulation for making the data size larger is an important task for hydrologic analysis. The simulation can be divided into two major categories which are the parametric and nonparametric methods. Also, precipitation simulation depends on time intervals such as daily or hourly rainfall simulations. So far, Markov model is the most favored method for daily precipitation simulation. However, most models are consist of state transition probability by using the homogeneous Markov chain model. In order to make a state vector, the small size of data brings difficulties, and also the assumption of homogeneousness among the state vector in a month causes problems. In other words, the process of daily precipitation mechanism is nonstationary. In order to overcome these problems, this paper focused on the nonparametric method by using uni-variate and multi-variate when simulating a precipitation instead of currently used parametric method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.