• Title/Summary/Keyword: precipitation events

Search Result 371, Processing Time 0.025 seconds

The Relationship of Froude Number and Developed Cloud Band Locations Near Yeongdong Region Under the Siberian High Pressure System (시베리아 고기압 영향으로 영동지역 부근에서 발달한 구름대의 위치와 Froude 수와의 관계)

  • Kim, Yu-Jin;Kim, Man-Ki;Lee, Jae Gyoo
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.325-342
    • /
    • 2019
  • Precipitation and no-precipitation events under the influence of the Siberian high pressure system in Yeondong region, were analysed and classified as four types [obvious precipitation event (OP) type, obvious no-precipitation event (ON) type, ambiguous precipitation event (AP) type and ambiguous no-precipitation event (AN) type], according to the easiness in determining whether to have precipitation or not in Yeongdong region, to help in improving the forecast skill. Concerning the synoptic pressure pattern, for OP type, the ridge of Siberian high extends from Lake Baikal toward Northeast China, and there is a northerly wind upstream of the northern mountain complex (located near the Korean-Chinese border). On the other hand, for ON type, the ridge of Siberian high extends southeastward from Lake Baikal, and there is a westerly wind upstream of the northern mountain complex. The pressure pattern of AP type was similar to the OP type and that of AN type was also similar to ON type. Thus it was difficult to differentiate AP type and OP type and AN type and ON type based on the synoptic pressure pattern only. The four types were determined by U (wind speed normal to the Taebaek mountains) and Froude number (FN). That is, for OP type, average FN and U at Yeongdong coast are ~2.0 and ${\sim}6m\;s^{-1}$, and those at Yeongseo region are 0.0 and $0.1m\;s^{-1}$, respectively. On the contrary, for ON type, average FN and U at Yeongdong coast are 0.0 and $0.2m\;s^{-1}$, and those at Yeongseo region are ~1.0 and ${\sim}4m\;s^{-1}$, respectively. For AP type, average FN and U at Yeongdong coast are ~1.0 and ${\sim}4m\;s^{-1}$, and those at Yeongseo region are 0.0 and $0.2m\;s^{-1}$, whereas for AN type, average FN and U at Yeongdong coast are 0.1 and $0.6m\;s^{-1}$ and those at Yeongseo region are ~1.0 and ${\sim}3m\;s^{-1}$, respectively. Based on the result, a schematic diagram for each type was suggested.

Derivation of Drought Severity-Duration-Frequency Curves Using Drought Frequency Analysis (가뭄빈도해석을 통한 가뭄심도-지속시간-생기빈도 곡선의 유도)

  • Lee, Joo-Heon;Kim, Chang-Joo
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.11
    • /
    • pp.889-902
    • /
    • 2011
  • In this study, frequency analysis using drought index had implemented for the derivation of drought severity-duration-frequency (SDF) curves to enable quantitative evaluations of past historical droughts having been occurred in Korean Peninsular. Seoul, Daejeon, Daegu, Gwangju, and Busan weather stations were selected and precipitation data during 1974~2010 (37 years) was used for the calculation of Standardized Precipitation Index (SPI) and frequency analysis. Based on the results of goodness of fit test on the probability distribution, Generalized Extreme Value (GEV) was selected as most suitable probability distribution for the drought frequency analysis using SPI. This study can suggest return periods for historical major drought events by using newrly derived SDF curves for each stations. In case of 1994~1995 droughts which had focused on southern part of Korea. SDF curves of Gwangju weather station showed 50~100 years of return period and Busan station showed 100~200 years of return period. Besides, in case of 1988~1989 droughts, SDF of Seoul weather station were appeared as having return periods of 300 years.

Regional Drought Assessment Considering Climate Change and Relationship with Agricultural Water in Jeju Island (기후변화를 고려한 제주지역의 권역별 가뭄 평가 및 농업용수에의 영향 고찰)

  • Song, Sung-Ho;Yoo, Seung-Hwan;Bae, Seung-Jong
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.625-638
    • /
    • 2013
  • Recently, the occurrences of droughts have been increased because of global warming and climate change. Water resources that mostly rely on groundwater are particularly vulnerable to the impact of precipitation variation, one of the major elements of climate change, are very sensitive to changes in the seasonal distribution as well as the average annual change in the viewpoint of agricultural activity. In this study, the status of drought for the present and future on Jeju Island which entirely rely on groundwater using SPI and PDSI were analyzed considering regional distribution of crops in terms of land use and fluctuation of water demand. The results showed that the precipitation distribution in Jeju Island is changed in intensity as well as seasonal variation of extreme events and the amount increase of precipitation during the dry season in the spring and fall indicated that agricultural water demand and supply policies would be considered by regional characteristics, especially the western region with largest market garden crops. Regarding the simulated future drought, the drought would be mitigated in the SPI method because of considering total rainfall only excluding intensity variation, while more intensified in the PDSI because it considers the evapotranspiration as well as rainfall as time passed. Moreover, the drought in the northern and western regions is getting worse than in the southern region so that the establishment of regional customized policies for water supply in Jeju Island is needed.

A Study on Sensitivity of Heavy Precipitation to Domain Size with a Regional Numerical Weather Prediction Model (지역예측모델 영역 크기에 따른 집중호우 수치모의 민감도 실험)

  • Min, Jae-Sik;Roh, Joon-Woo;Jee, Joon-Bum;Kim, Sangil
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.85-95
    • /
    • 2016
  • In this study, we investigated the variabilities of wind speed of 850 hPa and precipitable water over the East Asia region using the NCEP Final Analysis data from December 2001 to November 2011. A large variance of wind speed was observed in northern and eastern China during the winter period. During summer, the regions of the East China Sea, the South Sea of Japan and the East Sea show large variances in the wind speed caused by an extended North Pacific High and typhoon activities. The large variances in the wind speed in the regions are shown to be correlated with the inter-annual variability of precipitable water over the inland region of windward side of the Korean Peninsula. Based on the investigation, sensitivity tests to the domain size were performed using the WRF model version 3.6 for heavy precipitation events over the Korean Peninsula for 26 and 27 July 2011. Numerical experiments of different domain sizes were set up with 5 km horizontal and 50 levels vertical resolutions for the control and the first experimental run, and 9 km horizontal for the second experimental run. We found that the major rainfalls correspond to shortwave troughs with baroclinic structure over Northeast China and extended North Pacific High. The correlation analysis between the observation and experiments for 1-h precipitation indicated that the second experiment with the largest domain had the best performance with the correlation coefficient of 0.79 due to the synoptic-scale systems such as short-wave troughs and North Pacific High.

Effects of Network Density on Gridded Horizontal Distribution of Meteorological Variables in the Seoul Metropolitan Area (관측망 밀도가 기상 자료의 격자형 수평 분포에 미치는 영향)

  • Kang, Minsoo;Park, Moon-Soo;Chae, Jung-Hoon;Min, Jae-Sik;Chung, Boo Yeon;Han, Seong Eui
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.183-196
    • /
    • 2019
  • High-quality and high-resolution meteorological information is essential to reduce damages due to disastrous weather phenomena such as flash flood, strong wind, and heat/cold waves. There are many meteorological observation stations operated by Korea Meteorological Administration (KMA) in Seoul Metropolitan Area (SMA). Nonetheless, they are still not enough to represent small-scale weather phenomena like convective storm cells due to its poor resolution, especially over urban areas with high-rise buildings and complex land use. In this study, feasibilities to use additional pre-existing networks (e.g., operated by local government and private company) are tested by investigating the effects of network density on the gridded horizontal distribution of two meteorological variables (temperature and precipitation). Two heat wave event days and two precipitation events are chosen, respectively. And the automatic weather station (AWS) networks operated by KMA, local-government, and SKTechX in Incheon area are used. It is found that as network density increases, correlation coefficients between the interpolated values with a horizontal resolution of 350 m and observed data also become large. The range of correlation coefficients with respect to the network density shows large in nighttime rather than in daytime for temperature. While, the range does not depend on the time of day, but on the precipitation type and horizontal distribution of convection cells. This study suggests that temperature and precipitation sensors should be added at points with large horizontal inhomogeneity of land use or topography to represent the horizontal features with a resolution higher than 350 m.

A Study of Quantitative Snow Water Equivalent (SWE) Estimation by Comparing the Snow Measurement Data (적설 관측자료 비교를 통한 정량적 SWE 산출에 관한 연구)

  • Ro, Yonghun;Chang, Ki-Ho;Cha, Joo-Wan;Chung, Gunhui;Choi, Jiwon;Ha, Jong-Chul
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.269-282
    • /
    • 2019
  • While it is important to obtain the accurate information on snowfall data due to the increase in damage caused by the heavy snowfall in the winter season, it is not easy to observe the snowfall quantitatively. Recently, snow measurements using a weighing precipitation gauge have been carried out, but there is a problem that high snowfall intensity results in low accuracy. Also, the observed snowfall data are sensitive depending on wind speed, temperature, and humidity. In this study, a new process of quality control for snow water equivalent (SWE) data of the weighing precipitation gauge were proposed to cover the low accuracy of snow data and maximize the data utilization. Snowfall data (SWE) observed by Pluvio, Parsivel, snow-depth meter using laser or ultrasonic, and rainfall gauge in Cloud Physics Observation Site (CPOS) were compared and analyzed. Applying the QC algorithm including the use of number of hydrometeor particles as reference, the increased SWE per the unit time was determined and the data noise was removed and marked by flag. The SWE data converted by the number concentration of hydrometeor particles are tested as a method to restore the QC-removed data, and show good agreement with those of the weighing precipitation gauge, though requiring more case studies. The three events data for heavy snowfall disaster in Pyeongchang area was analyzed. The SWE data with improved quality was showed a good correlation with the eye-measured data ($R^2$ > 0.73).

How do diverse precipitation datasets perform in daily precipitation estimations over Africa?

  • Brian Odhiambo Ayugi;Eun-Sung Chung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.158-158
    • /
    • 2023
  • Characterizing the performance of precipitation (hereafter PRE) products in estimating the uncertainties in daily PRE in the era of global warming is of great value to the ecosystem's sustainability and human survival. This study intercompares the performance of different PRE products (gauge-based, satellite and reanalysis) sourced from the Frequent Rainfall Observations on GridS (FROGS) database over diverse climate zones in Africa and identifies regions where they depict minimal uncertainties in order to build optimal maps as a guide for different climate users. This is achieved by utilizing various techniques, including the triple collection (TC) approach, to assess the capabilities and limitations of different PRE products over nine climatic zones over the continent. For daily scale analysis, the uncertainties in light PRE (0.1 5mm/day) are prevalent over most regions in Africa during the study duration (2001-2016). Estimating the occurrence of extreme PRE events based on daily PRE 90th percentile suggests that extreme PRE is mainly detected over central Africa (CAF) region and some coastal regions of west Africa (WAF) where the majority of uncorrected satellite products show good agreement. The detection of PRE days and non-PRE days based on categorical statistics suggests that a perfect POD/FAR score is unattainable irrespective of the product type. Daily PRE uncertainties determined based on quantitative metrics show that consistent, satisfactory performance is demonstrated by the IMERG products (uncorrected), ARCv2, CHIRPSv2, 3B42v7.0 and PERSIANN_CDRv1r1 (corrected), and GPCC, CPC_v1.0, and REGEN_ALL (gauge) during the study period. The optimal maps that show the classification of products in regions where they depict reliable performance can be recommended for various usage for different stakeholders.

  • PDF

Application of deep convolutional neural network for short-term precipitation forecasting using weather radar-based images

  • Le, Xuan-Hien;Jung, Sungho;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.136-136
    • /
    • 2021
  • In this study, a deep convolutional neural network (DCNN) model is proposed for short-term precipitation forecasting using weather radar-based images. The DCNN model is a combination of convolutional neural networks, autoencoder neural networks, and U-net architecture. The weather radar-based image data used here are retrieved from competition for rainfall forecasting in Korea (AI Contest for Rainfall Prediction of Hydroelectric Dam Using Public Data), organized by Dacon under the sponsorship of the Korean Water Resources Association in October 2020. This data is collected from rainy events during the rainy season (April - October) from 2010 to 2017. These images have undergone a preprocessing step to convert from weather radar data to grayscale image data before they are exploited for the competition. Accordingly, each of these gray images covers a spatial dimension of 120×120 pixels and has a corresponding temporal resolution of 10 minutes. Here, each pixel corresponds to a grid of size 4km×4km. The DCNN model is designed in this study to provide 10-minute predictive images in advance. Then, precipitation information can be obtained from these forecast images through empirical conversion formulas. Model performance is assessed by comparing the Score index, which is defined based on the ratio of MAE (mean absolute error) to CSI (critical success index) values. The competition results have demonstrated the impressive performance of the DCNN model, where the Score value is 0.530 compared to the best value from the competition of 0.500, ranking 16th out of 463 participating teams. This study's findings exhibit the potential of applying the DCNN model to short-term rainfall prediction using weather radar-based images. As a result, this model can be applied to other areas with different spatiotemporal resolutions.

  • PDF

A Study on the Characteristics of Heavy Rainfalls in Chungcheong Province using Radar Reflectivity (레이더 자료를 이용한 충청지역 집중호우 사례 특성 분석)

  • Song, Byung-Hyun;Nam, Jae-Cheol;Nam, Kyung-Yub;Choi, Ji-Hye
    • Atmosphere
    • /
    • v.14 no.1
    • /
    • pp.24-43
    • /
    • 2004
  • This paper describes the detailed characteristics of heavy rainfall events occurred in Chungcheong province on 15 and 16 April and from 6 to 8 August 2002 based on the analysis of raingauge rainfall rate and radar reflectivity from the METRI's X-band Weather Radar located in Cheongju. A synoptic analysis of the case is carried out, first, and then the analysis is devoted to seeing how the radar observes the case and how much information we obtain. The highly resolved radar reflectivity of horizontal and vertical resolutions of 1 km and 500 m, respectively shows a three-dimensional structure of the precipitating system, in a similar sequence with the ground rainfall rate. The radar echo classification algorithm for convective/stratiform cloud is applied. In the convectively-classified area, the radar reflectivity pattern shows a fair agreement with that of the surface rainfall rate. This kind of classification using radar reflectivity is considered to be useful for the precipitation forecasting. Another noteworthy aspect of the case includes the effect of topography on the precipitating system, following the analysis of the surface rainfall rate, topography, and precipitating system. The results from this case study offer a unique opportunity of the usefulness of weather radar for better understanding of structural and variable characteristics of flash flood-producing heavy rainfall events, in particular for their improved forecasting.

Hydrograph Separation using Geochemical tracers by Three-Component Mixing Model for the Coniferous Forested Catchment in Gwangneung Gyeonggido, Republic of Korea

  • Kim, Kyongha;Yoo, Jae-Yun
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.561-566
    • /
    • 2007
  • This study was conducted to clarify runoff production processes in forested catchment through hydrograph separation using three-component mixing model based on the End Member Mixing Analysis (EMMA) model. The study area is located in the coniferous-forested experimental catchment, Gwangneung Gyeonggido near Seoul, Korea (N 37 45', E 127 09'). This catchment is covered by Pinus Korainensis and Abies holophylla planted at stocking rate of 3,000 trees $ha^{-1}$ in 1976. Thinning and pruning were carried out two times in the spring of 1996 and 2004 respectively. We monitored 8 successive events during the periods from June 15 to September 15, 2005. Throughfall, soil water and groundwater were sampled by the bulk sampler. Stream water was sampled every 2-hour through ISCO automatic sampler for 48 hours. The geochemical tracers were determined in the result of principal components analysis. The concentrations of $SO_4{^{2-}$ and $Na^+$ for stream water almost were distributed within the bivariate plot of the end members; throughfall, soil water and groundwater. Average contributions of throughfall, soil water and groundwater on producing stream flow for 8 events were 17%, 25% and 58% respectively. The amount of antecedent precipitation (AAP) plays an important role in determining which end members prevail during the event. It was found that ground water contributed more to produce storm runoff in the event of a small AAP compared with the event of a large AAP. On the other hand, rain water showed opposite tendency to ground water. Rain water in storm runoff may be produced by saturation overland flow occurring in the areas where soil moisture content is near saturation. AAP controls the producing mechanism for storm runoff whether surface or subsurface flow prevails.