In this study, we propose Radial basis function Neural Network(RBFNN) using Recursive Weighted Least Square Estimation(RWLSE) to effectively deal with big data class meteorological radar data. In the condition part of the RBFNN, Fuzzy C-Means(FCM) clustering is used to obtain fitness values taking into account characteristics of input data, and connection weights are defined as linear polynomial function in the conclusion part. The coefficients of the polynomial function are estimated by using RWLSE in order to cope with big data. As recursive learning technique, RWLSE which is based on WLSE is carried out to efficiently process big data. This study is experimented with both widely used some Machine Learning (ML) dataset and big data obtained from meteorological radar to evaluate the performance of the proposed classifier. The meteorological radar data as big data consists of precipitation echo and non-precipitation echo, and the proposed classifier is used to efficiently classify these echoes.
한반도의 강수패턴을 보면 강수일수는 감소하나 호우일수는 증가하고 있는 추세이다. 특히, 우리나라는 강수의 대부분이 하계에 집중되어 있고, 단시간에 강수의 변화가 심하기 때문에 기존의 수치예보를 보완해줄 수 있는 예보체계의 확립이 불가피한 실정이다. TREC(Tracking Radar Echoes by Correlation)기법은 폭풍에 대한 내부 움직임을 결정하기 위한 목적으로 Rinehart와 Garvey(1978)에 의해 처음 개발된 것으로 비교적 간단하게 레이더 에코를 이용하여 강수의 이동경로를 추적할 수 있다. 일정한 시간 간격으로 제공되는 레이더 반사도 자료에 대하여 설정된 두 window 사이의 상관계수의 최대치를 찾아냄으로써 강수의 움직임을 파악하였다. 개발된 기법은 레이더 에코로부터 강수의 안정된 이동방향과 이동속도를 제시하기 위하여 상관성 분석과 함께 일치성 분석 및 가중함수에 의한 이동 백터장 보정을 수행하였다. 또한 이동 백터의 외삽을 통하여 강우이동경로와 대상유역의 단시간 예측 면적 강우 산정 방법을 제시하였다. 결과는 개선된 단시간 강수예측 가능성을 보여주었다.
본 연구에서는 한반도의 유역별 대표 기상관측 지점을 선정하여 기후변화로 인하여 미래에 나타날 수 있는 가뭄의 경향성을 분석하였다. 분석을 위한 자료는 실제 강수량 자료(1974~1999년)와 A2시나리오를 따르는 5개의 GCMs(General Circulation Model) 자료를 통계적 상세화한 강수량 자료(1974~2099년)를 이용하여 산정한 지속기간 6개월의 SPI(Standardized Precipitation Index)를 사용하였다. 분석을 위한 대표 기상관측 지점으로는 춘천, 서울, 대전, 대구, 전주, 광주, 부산 지점을 선정하였으며 GCM으로는 호주(CSIRO : MK3), 미국(GFDL : CM2_1), 독일/한국(CONS : ECHO-G), 일본(MRI : CGCM2_3_2), 영국(UKMO : HADGEM1)의 GCM을 선정하였다. 가뭄의 통계적 특성을 분석하기 위하여 Mann-Kendall 검정을 통한 경향성 분석과 Wavelet Transform 분석을 통한 주기성 분석을 하였으며 Drought Spell을 이용하여 가뭄심도별 발생빈도를 보았다. 그 결과, 경향성 분석에서는 각 GCMs의 차이를 볼 수 있었으며 CSIRO : MK3.0, GFDL : CM2_1, MIUB : ECHO-G 모델에서는 전체적으로 가뭄이 완화되고 MRI : CGCM2_3_2, UKMO : HADGEM1 모델에서는 가뭄이 심화되는 것으로 나타났다. 주기성 분석에서는 춘천, 서울에서는 낮은 주기를 대전, 대구, 전주, 광주, 부산지점에서는 다소 긴 주기를 보여주었다. Drought-spell에 의한 분석에서는 전 관측지점에서 SPI의 이론적인 확률밀도 함수값과 유사하게 나타나고 있었으며 이를 통해, 미래에는 극심한 가뭄의 빈도가 증가하고 있는 것을 예측할 수 있었다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제16권1호
/
pp.27-35
/
2016
Black-box classifiers, such as artificial neural network and support vector machine, are a popular classifier because of its remarkable performance. They are applied in various fields such as inductive inferences, classifications, or regressions. However, by its characteristics, they cannot provide appropriate explanations how the classification results are derived. Therefore, there are plenty of actively discussed researches about interpreting trained black-box classifiers. In this paper, we propose a method to make a fuzzy logic-based classifier using extracted rules from the artificial neural network and support vector machine in order to interpret internal structures. As an object of classification, an anomalous propagation echo is selected which occurs frequently in radar data and becomes the problem in a precipitation estimation process. After applying a clustering method, learning dataset is generated from clusters. Using the learning dataset, artificial neural network and support vector machine are implemented. After that, decision trees for each classifier are generated. And they are used to implement simplified fuzzy logic-based classifiers by rule extraction and input selection. Finally, we can verify and compare performances. With actual occurrence cased of the anomalous propagation echo, we can determine the inner structures of the black-box classifiers.
본 연구에서는 인공 벌 군집(ABC: Artificial Bee Colony) 알고리즘을 이용하여 주어진 레이더 데이터로부터 강수 사례와 비강수 사례를 분류하는 방사형 기저함수 신경회로망(RBFNNs: Radial Basis Function Neural Networks)분류기를 소개한다. 기상청에서 사용하고 있는 기상 레이더 데이터의 특성 분석을 통해 입력 데이터를 구성한다. 방사형 기저함수 신경회로망의 조건부에서는 Fuzzy C-Means 클러스터링 방법을 이용하여 적합도를 계산하고, 결론부에서는 최소자승법(LSE: Least Square Method)을 이용하여 다항식 계수를 추정한다. 추론부에서 최종출력 값은 퍼지 추론 방법을 이용하여 얻어진다. 제안된 분류기의 성능은 기상청에서 사용하는 QC와 CZ 데이터를 고려하여 비교 및 분석되어진다.
Climate extreme variability is a major cause of disaster such as flood and drought types occurred in Korea and its effects is also more severe damage in last decades which can be danger mature events in the future. The main aim of this study was to assess the effectives of climate change on drought for an agriculture as Nakdong basin in Korea using climate change data in the future from data of General Circulation Models (GCM) of ECHO-G, with the developing countries like Korea, the developed climate scenario of medium-high greenhouse gas emission was proposed of the SRES A2. The Standardized Precipitation Index (SPI) was applied for drought evaluation. The drought index (SPI) applied for sites in catchment and it is evaluated accordingly by current and future precipitation data, specific as determined for data from nine precipitation stations with data covering the period 1980-2009 for current and three periods 2010-2039, 2040-2069 and 2070-2099 for future; time scales of 3month were used for evaluating. The results determined drought duration, magnitude and spatial extent. The drought in catchment act intensively occurred in March, April, May and November and months of drought extreme often appeared annual in May and November; drought frequent is a non-uniform cyclic pattern in an irregular repetitive manner, but results showed drought intensity increasing in future periods. The results indicated also spatial point of view, the SPI analysis showed two of drought extents; local drought acting on one or more one of sites and entire drought as cover all of site in catchment. In addition, the meteorology drought simulation maps of spatial drought representation were carried out with GIS software to generate for some drought extreme years in study area. The method applied in this study are expected to be appropriately applicable to the evaluation of the effects of extreme hydrologic events, the results also provide useful for the drought warning and sustainable water resources management strategies and policy in agriculture basins.
Heavy snowfall events have occurred frequently in the Yeongdong region but understanding of these events have trouble in lack of snowfall observation in this region because it is composed of complex topography like the "Taebaek mountains" and the "East sea". These problems can be solved by quantitative precipitation estimation technique using remote sensing such as radar, satellite, etc. Two radars which are able to cover over Yeondong region were installed at Gangneung (GNG) and Gwangdeoksan (GDK). This study uses radar and water equivalent of snow cover to investigate the characteristics of radar echoes and the $Z_e-R$ relations associated with the 10 Yeongdong heavy snowfall events during the last 5 years (2010~2014). It was found that the heights which the probability of detection (POD) of snow detection by GNG radar is more than 80% are 3,000 m and 1,500 m in convective cloud and stratiform cloud, respectively. The vertical gradient of radar reflectivity is less decreased in convective cloud than stratiform cloud. However, POD by GDK radar are lower than 80% at all layers because the majority of Yeondong observational stations are more than 100 km away from GDK radar site. Furthermore, we examined $Z_e-R$ relation from the 10 events using GNG radar and compared the "a" and "b" obtained from these examinations at Sokcho (SC) and Daegwallyeong (DG). These "a" and "b" are estimated from radar echo at 500 m (SC) and 1,500 m (DG). The values of "a" differ in their stations such as SC and DG are 30~116 and 6~39, respectively. But "b" is 0.4~1.7 irrespective of stations. Moreover, the value of "a" increased with surface air temperature. Therefore, quantitative precipitation estimation in heavy snowfall events by radar echo using fixed "a" and "b" is difficult because these values changed according to those precipitation characteristics.
본 연구에서는 기후변화가 국내 수자원에 미치는 영향을 평가하기 위해 고해상도($27km\;{\times}\;27km$)의 SRES A2 시나리오와 LARS-WG를 이용하여 국내 139개 소유역별 기후시나리오를 생산하였다. 본 연구에서 사용된 고해상도 시나리오는 약 350km 수평해상도의 ECHO-G 자료를 NCAR/PSU MM5를 이용하여 27km 수평해상도로 상세화한 것이다. A2 시나리오는 우리나라의 공간적 강수특성을 비교적 잘 모사하였으나, 한강과 금강유역의 강수량이 적게 모의되는 문제점을 보였다. 이러한 기후모형의 한계를 극복하고 유역스케일의 신뢰성 높은 기후시나리오를 생산하기 위해 일기상발생기인 LARS-WG를 선정하고 국내 기후모의에 대한 적요성을 평가하였다. LARS-WG를 이용한 기후모의 결과 월평균최대.최소기온과 월평균강수량은 관측치에 평균에서는 ${\pm}20%$, 표준편차에서는 ${\pm}50%$ 이내로 기후변화에 따른 수자원 영향평가의 목적으로 적용성이 높다고 판단되었다. 또한 LARS-WG를 이용하여 유역별 시나리오를 생산하고 관측치와 비교한 결과 기후모형에서 모의하지 못하는 지역적인 기후특성을 잘 반영하는 것으로 분석되었다.
The radar reflectivity is significantly affected by ground clutter, beam blockage, anomalous propagation (AP), birds, insects, chaff, etc. The quality of radar reflectivity is very important in quantitative precipitation estimation. Therefore, Weather Radar Center (WRC) of Korea Meteorological Administration (KMA) employed two quality control algorithms: 1) Open Radar Product Generator (ORPG) and 2) fuzzy quality control algorithm to improve quality of radar reflectivity. In this study, an occurrence of AP echoes and the performance of both quality control algorithms are investigated. Consequently, AP echoes frequently occur during the spring and fall seasons. Moreover, while the ORPG QC algorithm has the merit of removing non-precipitation echoes, such as AP echoes, it also removes weak rain echoes and snow echoes. In contrast, the fuzzy QC algorithm has the advantage of preserving snow echoes and weak rain echoes, but it eliminates the partial area of the contaminated echo, including the AP echoes.
지역기후모델 RegCM3 이용하여 역학적 상세화 이중둥지격자체계를 구축하고 관측, ECHO-G/S의 20C3M 및 SRES A2 시나리오를 이용하여 동아시아(60km 분해능)와 한반도(20km 분해능)에 대한 현재 및 미래(1971-2100, 130년)의 기후변화 시나리오 자료를 생산하였다. 미래 동아시아와 한반도지역은 기온상승에 의해 대기 중 수증기 함유량 증가와 여름 몬순의 강화로 전 계절에 걸쳐 강수량이 증가하고 토양수분, 증발산도 증가할 것으로 전망되었다. 상세화된 일(daily)강수량 자료를 일반극치(general extreme value, GEV)분석을 활용하여 20세기 동안 한반도의 일최대강수량의 공간 분포를 분석하고 미래 강수의 일최대강수량 변화를 전망하였다. 20세기 (1971-2000)에는 남해안과 경기 내륙지방에서 일최대강수량의 빈도와 평균값이 나타났다. 21세기에는 일최대강수량의 평균은 현재보다 약 10 $mmday^{-1}$, 20년 빈도 강수량은 60 $mmday^{-1}$ 정도 증가할 것이고, 남해안과 서해안과 충청내륙일부지방, $39^{\circ}N$ 이북에서 뚜렷이 나타날 것으로 전망되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.